AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Fine mapping and characterization of the awn inhibitor B1 locus in common wheat (Triticum aestivum L.)

Jianqing Niua,bShusong Zhenga,b( )Xiaoli Shia,bYaoqi Sia,bShuiquan Tiana,bYilin Hea,bHong-Qing Linga,b( )
State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Awns play an important role in seed dispersal and photosynthesis of spikes. Three major awn inhibitors (Hd, B1, and B2) are reported in wheat. However, the molecular mechanism underlying awnlessness remained unknown until recently. In this study, we identified two F8 recombinant inbred lines (RILs) that were segregating for awn length. In order to identify the causal gene for awn length in the heterozygous inbred families (HIFs), SNPs were called from RNA sequencing (RNA-Seq) data for HIF-derived progenies with long and short awns. SNPs between long and short awn plants were evenly distributed on chromosomes (chr) other than chromosome 5A. SNPs on chr 5A were clustered in a region distal 688 Mb on the long arm, where inhibitor B1 was located. This suggested that B1 was the causal segregating locus. We precisely mapped B1 to ~1 Mb region using two HIF-derived families. Considering that the lines segregated for long, intermediate and short awn phenotypes we speculated that B1 should have a dosage effect on awn length. Two differentially expressed genes (DEGs) located in the candidate region were regarded as candidate genes for B1, because the molecular expression pattern was consistent with the phenotype. HIFs with long and short awns showed no difference on grain yield and other agronomic traits.

References

[1]

A.E. Sorensen, Seed dispersal by adhesion, Annu. Rev. Ecol. Syst. 17 (1986) 443–463.

[2]

F.J. Grundbacher, The physiological function of the cereal awn, Bot. Rev. 29 (1963) 366–381.

[3]
E.C. Miller, H.G. Gauch, G.A. Gries, A Study of the Morphological Nature and Physiological Functions of the Awns of Winter Wheat, Kansas Technical Bulletin 57, Agricultral Experiment Station, Kansas State College of Agricuture and Applied Science, Manhattan, Kansas, 1944. https://www.ksre.k-state.edu/historicpublications/pubs/STB057.pdf.
[4]

L.T. Evans, J. Bingham, P. Jackson, J. Sutherland, Effect of awns and drought on the supply of photosynthate and its distribution within wheat ears, Ann. Appl. Biol. 70 (1972) 67–76.

[5]

X. Li, H. Wang, H. Li, L. Zhang, N. Teng, Q. Lin, J. Wang, T. Kuang, Z. Li, B. Li, A. Zhang, J. Lin, Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum), Physiol. Plant. 127 (2006) 701–709.

[6]

R. Motzo, F. Giunta, Awnedness affects grain yield and kernel weight in near-isogenic lines of durum wheat, Aust. J. Agric. Res. 53 (2002) 1285–1293.

[7]

A. Blum, Photosynthesis and transpiration in leaves and ears of wheat and barley varieties, J. Exp. Bot. 36 (1985) 432–440.

[8]

J. Bort, A. Febrero, T. Amaro, J. Araus, Role of awns in ear water-use efficiency and grain weight in barley, Agronomie 14 (1994) 133–139.

[9]

J.N. Martin, B.F. Carver, R.M. Hunger, T.S. Cox, Contributions of leaf rust resistance and awns to agronomic and grain quality performance in winter wheat, Crop Sci. 43 (2003) 1712–1717.

[10]

A.K. Chhabra, S.K. Sethi, Contribution and association of awns and flag-leaf with yield and its components in durum wheat, Cereal Res. Commun. 17 (1989) 265–271.

[11]

A.H. Teich, Interaction of awns and environment on grain yield in winter wheat (Triticum aestivum L.), Cereal Res. Commun. 10 (1982) 11–15.

[12]

S.M. Hosseini, K. Poustini, K.H.M. Siddique, J.A. Palta, Photosynthesis of barley awns does not play a significant role in grain yield under terminal drought, Crop Pasture Sci. 63 (2012) 489–499.

[13]

L.B. Olugbemi, R.B. Ausrin, J. Bingham, Effects of awns on the photosynthesis and yield of wheat, Triticum aestivum, Ann. Appl. Biol. 84 (1976) 241–250.

[14]

G.J. Rebetzke, D.G. Bonnett, M.P. Reynolds, Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat, J. Exp. Bot. 67 (2016) 2573–2586.

[15]

J. Luo, H. Liu, T. Zhou, B. Gu, X. Huang, Y. Shangguan, J. Zhu, Y. Li, Y. Zhao, Y. Wang, Q. Zhao, A. Wang, Z. Wang, T. Sang, Z. Wang, B. Han, An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice, Plant Cell 25 (2013) 3360–3376.

[16]

B. Gu, T. Zhou, J. Luo, H. Liu, Y. Wang, Y. Shangguan, J. Zhu, Y. Li, T. Sang, Z. Wang, B. Han, An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice, Mol. Plant 8 (2015) 1635–1650.

[17]

L. Hua, D.R. Wang, L. Tan, Y. Fu, F. Liu, L. Xiao, Z. Zhu, Q. Fu, X. Sun, P. Gu, H. Cai, S.R. McCouch, C. Sun, LABA1, a domestication gene associated with long, barbed awns in wild rice, Plant Cell 27 (2015) 1875–1888.

[18]

K. Bessho-Uehara, D.R. Wang, T. Furuta, A. Minami, K. Nagai, R. Gamuyao, K. Asano, R.B. Angeles-Shim, Y. Shimizu, M. Ayano, N. Komeda, K. Doi, K. Miura, Y. Toda, T. Kinoshita, S. Okuda, T. Higashiyama, M. Nomoto, Y. Tada, H. Shinohara, Y. Matsubayashi, A. Greenberg, J. Wu, H. Yasui, A. Yoshimura, H. Mori, S.R. McCouch, M. Ashikari, Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 8969–8974.

[19]

J. Jin, L. Hua, Z. Zhu, L. Tan, X. Zhao, W. Zhang, F. Liu, Y. Fu, H. Cai, X. Sun, P. Gu, D. Xie, C. Sun, GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication, Plant Cell 28 (2016) 2453–2463.

[20]

T. Toriba, H.Y. Hirano, The DROOPING LEAF and OsETTIN2 genes promote awn development in rice, Plant J. 77 (2014) 616–626.

[21]

T. Yuo, Y. Yamashita, H. Kanamori, T. Matsumoto, U. Lundqvist, K. Sato, M. Ichii, S.A. Jobling, S. Taketa, A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley, J. Exp. Bot. 63 (2012) 5223–5232.

[22]

K.J. Müller, N. Romano, O. Gerstner, F. Garcia-Marotot, C. Pozzi, F. Salamini, W. Rohde, The barley Hooded mutation caused by a duplication in a homeobox gene intron, Nature 374 (1995) 727–730.

[23]

R.A. McIntosh, Catalogue of gene symbols for wheat, Cereal Res. Commun. 5 (1977) 189–191.

[24]

E.R. Sears, Chromosome mapping with the aid of telocentrics, Hereditas 2 (1966) 370–381.

[25]
E.R. Sears, The Aneuploids of Common Wheat, Missouri Agricultural Experiment Station Research Bulletin 572, Missouri Agricultral Experiment Stataion and U.S. Department of Agriculture Cooperating, Columbia, Missouri, USA, 1954. https://core.ac.uk/download/pdf/75907393.pdf.
[26]

H. Li, Y. Han, X. Guo, F. Xue, C. Wang, W. Ji, Genetic effect of locus B2 inhibiting awning in double-ditelosomic 6B of Triticum durum DR147, Genet. Resour. Crop Evol. 62 (2015) 407–418.

[27]

R. Nishijima, T.M. Ikeda, S. Takumi, Genetic mapping reveals a dominant awn-inhibiting gene related to differentiation of the variety anathera in the wild diploid wheat Aegilops tauschii, Genetica 146 (2018) 75–84.

[28]

M. Yoshioka, S. Takumi, J.C.M. Iehisa, R. Ohno, T. Kimura, H. Enoki, S. Nishimura, S. Nasuda, Three dominant awnless genes in common wheat: fine mapping, interaction and contribution to diversity in awn shape and length, PLoS One 12 (2017) e0176148.

[29]

K. Kato, H. Miura, M. Akiyama, M. Kuroshima, S. Sawada, RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat, Euphytica 101 (1998) 91–95.

[30]

P. Sourdille, T. Cadalen, G. Gay, B. Gill, M. Bernard, Molecular and physical mapping of genes affecting awning in wheat, Plant Breed. 121 (2002) 320–324.

[31]

I.J. Mackay, P. Bansept-Basler, T. Barber, A.R. Bentley, J. Cockram, N. Gosman, A.J. Greenland, R. Horsnell, R. Howells, D.M. O'Sullivan, G.A. Rose, P.J. Howell, An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation, G3-Genes Genomes Genet. 4 (2014) 1603–1610.

[32]

Y. Liu, Y. Lin, S. Gao, Z. Li, J. Ma, M. Deng, G. Chen, Y. Wei, Y. Zheng, A genome-wide association study of 23 agronomic traits in Chinese wheat landraces, Plant J. 91 (2017) 861–873.

[33]

S. Marklund, R. Chaudhary, L. Marklund, K. Sandberg, L. Andersson, Extensive mtDNA diversity in horses revealed by PCR-SSCP analysis, Anim. Genet. 26 (1995) 193–196.

[34]

Y. Chen, Z. Huang, Y. Zhang, S. Li, Y. Li, J. Ye, X. Zhang, J. Wang, H. Yang, L. Fang, Y. Chen, C. Shi, Q. Chen, C. Yu, Z. Li, SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data, Gigascience 7 (2018) 1–6.

[35]

A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics 30 (2014) 2114–2120.

[36]

B. Langmead, S.L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods 9 (2012) 357–359.

[37]

A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M.A. DePristo, The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res. 20 (2010) 1297–1303.

[38]

B. Li, C.N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics 12 (2011) 323.

[39]

L. Wang, Z. Feng, X. Wang, X. Wang, X. Zhang, DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics 26 (2010) 136–138.

[40]
The R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, 2018.
[41]

R. Appels, K. Eversole, N. Stein, C. Feuillet, B. Keller, et al., Shifting the limits in wheat research and breeding using a fully annotated reference genome, Science 361 (2018) 7191.

[42]

S. Sansen, C.J. de Ranter, K. Gebruers, K. Brijs, C.M. Courtin, J.A. Delcour, A. Rabijns, Structural basis for inhibition of Aspergillus niger xylanase by Triticum aestivum xylanase inhibitor-I, J. Biol. Chem. 279 (2004) 36022–36028.

[43]

M.L. Maydup, M. Antonietta, C. Graciano, J.J. Guiamet, E.A. Tambussi, The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: responses to water deficit and the effects of awns on ear temperature and hydraulic conductance, Field Crops Res. 167 (2014) 102–111.

[44]

C.B. Liller, A. Walla, M.P. Boer, P. Hedley, M. Macaulay, S. Effgen, M. von Korff, G.W. van Esse, M. Koornneef, Fine mapping of a major QTL for awn length in barley using a multiparent mapping population, Theor. Appl. Genet. 130 (2017) 269–281.

[45]

M.L. Maydup, M. Antonietta, J.J. Guiamet, C. Graciano, J.R. López, E.A. Tambussi, The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.), Field Crops Res. 119 (2010) 48–58.

[46]

D. Jagathesan, C. Bhatia, M.S. Swaminathan, Effect of induced awn mutations on yield in wheat, Nature 190 (1961) 468.

[47]

R.A. Weyhrich, B.F. Carver, E.L. Smith, Effects of awn suppression on grain yield and agronomic traits in hard red winter wheat, Crop Sci. 34 (1994) 965–969.

[48]

M. Duwayri, Effect of flag leaf and awn removal on grain yield and yield components of wheat grown under dryland conditions, Field Crops Res. 8 (1984) 307–313.

[49]

H. Bastiaanse, M. Zinkgraf, C. Canning, H. Tsai, M. Lieberman, L. Comai, I. Henry, A. Groover, A comprehensive genomic scan reveals gene dosage balance impacts on quantitative traits in Populus trees, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 13690–13699.

[50]

C.L. Huskins, Fatuoid, speltoid and related mutations of oats and wheat, Bot. Rev. 12 (1946) 457–514.

[51]

S. Forster, E. Schumann, M. Baumann, W.E. Weber, K. Pillen, Copy number variation of chromosome 5A and its association with Q gene expression, morphological aberrations, and agronomic performance of winter wheat cultivars, Theor. Appl. Genet. 126 (2013) 3049–3063.

[52]
L.E. Dixon, I. Karsai, T. Kiss, N.M. Adamski, Z. Liu, Y. Ding, V. Allard, S.A. Boden, S. Griffiths, VERNALIZATION1 controls developmental responses of winter wheat under high ambient temperatures, Development 146 (2019) dev172684.
[53]

S. Kagale, K. Rozwadowski, EAR motif-mediated transcriptional repression in plants, Epigenetics 6 (2011) 141–146.

[54]

N. DeWitt, M. Guedira, E. Lauer, M. Sarinelli, P. Tyagi, D. Fu, Q. Hao, J.P. Murphy, D. Marshall, A. Akhunova, K. Jordan, E. Akhunov, G. Brown-Guedira, Sequence-based mapping identifies a candidate transcription repressor underlying awn suppression at the B1 locus in wheat, New Phytol. 225 (2019) 326–339.

[55]

D. Huang, Q. Zheng, T. Melchkart, Y. Bekkaoui, D.J.F. Konkin, S. Kagale, M. Martucci, F.M. You, M. Clarke, N.M. Adamski, C. Chinoy, A. Steed, C.A. McCartney, A.J. Cutler, P. Nicholson, J.A. Feurtado, Dominant inhibition of awn development by a putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat, New Phytol. 225 (2019) 340–355.

[56]

D. Wang, K. Yu, D. Jin, L. Sun, J. Chu, W. Wu, P. Xin, E. Gregova, X. Li, J. Sun, W. Yang, K. Zhan, A. Zhang, D. Liu, Natural variation in the promoter of Awn Length Inhibitor 1 (ALI-1) is associated with awn elongation and grain length in common wheat, Plant J. 101 (2020) 1075–1090.

The Crop Journal
Pages 613-622
Cite this article:
Niu J, Zheng S, Shi X, et al. Fine mapping and characterization of the awn inhibitor B1 locus in common wheat (Triticum aestivum L.). The Crop Journal, 2020, 8(4): 613-622. https://doi.org/10.1016/j.cj.2019.12.005

283

Views

3

Downloads

17

Crossref

N/A

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 22 July 2019
Revised: 21 September 2019
Accepted: 15 January 2020
Published: 20 March 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return