AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (777.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system

Shiyu Wanga,b,1Yihao Yanga,b,1Min Guoa,cChongyuan Zhonga,bChangjie Yanb,c( )Shengyuan Suna,c( )
Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, Jiangsu, China
Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, China
Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China

1 Contributed equally to this work.

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

High grain protein content (GPC) reduces rice eating and cooking quality (ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 system. Mutation efficiency varied with genetic background in the T0 generation, and GPC in the T1 generation decreased significantly, owing mainly to a reduction in glutelin content. Amylose content was down-regulated significantly in some Osaap6 and all Osaap10 mutants. The increased taste value of these mutants was supported by Rapid Visco Analysis (RVA) profiles, which showed higher peak viscosity and breakdown viscosity and lower setback viscosity than the wild type. There were no significant deficiencies in agronomic traits of the mutants. Targeted mutagenesis of OsAAP6 and OsAAP10, especially OsAAP10, using the CRISPR/Cas9 system can rapidly reduce GPC and improve ECQ of rice, providing a new strategy for the breeding cultivars with desired ECQ.

References

[1]

M. Martin, M.A. Fitzgerald, Proteins in rice grains influence cooking properties, J. Cereal Sci. 36 (2002) 285-294.

[2]

Y. Nakamura, Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: Rice endosperm as a model tissue, Plant Cell Physiol. 43 (2002) 718-725.

[3]

Z.X. Tian, Q. Qian, Q.Q. Liu, M.X. Yan, X.F. Liu, C.J. Yan, G.F. Liu, Z.Y. Gao, S.Z. Tang, D.L. Zeng, Y.H. Wang, J.M. Yu, M.H. Gu, J.Y. Li, Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 21760-21765.

[4]

C.Q. Zhang, J.H. Zhu, S.J. Chen, X.L. Fan, Q.F. Li, Y. Lu, M. Wang, H.X. Yu, C.D. Yi, S.Z. Tang, M.H. Gu, Q.Q. Liu, Wxlv the ancestral allele of rice waxy gene, Mol. Plant 12 (2019) 1157-1166.

[5]

Y.F. Tan, H. Corke, Factor analysis of physicochemical properties of 63 rice varieties, J. Sci. Food Agric. 82 (2002) 745-752.

[6]

J.L. Balindong, R.M. Ward, L. Liu, T.J. Rose, L.A. Pallas, B.W. Ovenden, P.J. Snell, D.L.E. Waters, Rice grain protein composition influences instrumental measures of rice cooking and eating quality, J. Cereal Sci. 79 (2018) 35-42.

[7]

Y.H. Yang, M. Guo, S.Y. Sun, Y.L. Zou, S.Y. Yin, Y.N. Liu, S.Z. Tang, M.H. Gu, Z.F. Yang, C.J. Yan, Natural variation of OsGluA2 is involved in grain protein content regulation in rice, Nat. Commun. 10 (2019) 1949.

[8]

E.T. Champagne, K.L. Bett, B.T. Vinyard, A.M. McClung, F.E. Barton II, K. Moldenhauer, S. Linscombe, K. McKenzie, Correlation between cooked rice texture and rapid visco analyser measurements, Cereal Chem. 76 (1999) 764-771.

[9]

J. Cui, X. Zhang, B. He, Z.Q. Cui, A. Kusutani, S. Ito, Y. Matsue, Physicochemical properties related to palatability of Chinese japonica-type rice, J. Fac. Agric., Kyushu Univ. 61 (2016) 281-285.

[10]

B. Peng, H.L. Kong, Y.B. Li, L.Q. Wang, M. Zhong, L. Sun, G.J. Gao, Q.L. Zhang, L.J. Luo, G.W. Wang, W.B. Xie, J.X. Chen, W. Yao, Y. Peng, L. Lei, X.M. Lian, J.H. Xiao, C.G. Xu, X.H. Li, Y.Q. He, OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice, Nat. Commun. 5 (2014) 4847.

[11]

X. Liu, D.R. Bush, Expression and transcriptional regulation of amino acid transporters in plants, Amino Acids 30 (2006) 113-120.

[12]

K. Dinkeloo, S. Boyd, G. Pilot, Update on amino acid transporter functions and on possible amino acid sensing mechanisms in plants, Semin. Cell. Dev. Biol. 74 (2018) 105-113.

[13]

M. Tegeder, Transporters for amino acids in plant cells: some functions and many unknowns, Curr. Opin. Biotech. 15 (2012) 315-321.

[14]

H.M. Zhao, H.L. Ma, L. Yu, X. Wang, J. Zhao, Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.), PLoS One 7 (2012), e49210.

[15]

J. Karmann, B. Muller, U.Z. Hammes, The long and winding road: transport pathways for amino acids in Arabidopsis seeds, Plant Reprod. 31 (2018) 253-261.

[16]

J.P. Santiago, M. Tegeder, Connecting source with sink: the role of Arabidopsis AAP8 in phloem loading of amino acids, Plant Physiol. 171 (2016) 508-521.

[17]

A. Sanders, R. Collier, A. Trethewy, G. Gould, R. Sieker, M. Tegeder, AAP1 regulates import of amino acids into developing Arabidopsis embryos, Plant J. 59 (2009) 540-552.

[18]

L.Z. Zhang, Q.M. Tan, R. Lee, A. Trethewy, Y.H. Lee, M. Tegeder, Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis, Plant Cell 22 (2010) 3603-3620.

[19]

E. Hunt, S. Gattolin, H.J. Newbury, J.S. Bale, H.M. Tseng, D.A. Barrett, J. Pritchard, A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected, J. Exp. Bot. 61 (2010) 55-64.

[20]

K. Lu, B.W. Wu, J. Wang, W. Zhu, H.P. Nie, J.J. Qian, W.T. Huang, Z.M. Fang, Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice, Plant Biotechnol. J. 16 (2018) 1710-1722.

[21]

K. Belhaj, A. Chaparro-Garcia, S. Kamoun, N.J. Patron, V. Nekrasov, Editing plant genomes with CRISPR/Cas9, Curr. Opin. Biotechnol. 32 (2015) 76-84.

[22]

W.Z. Jiang, H.B. Zhou, H.H. Bi, M. Fromm, B. Yang, D.P. Weeks, Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice, Nucleic Acids Res. 41 (2013), e188.

[23]

H. Zhang, J.S. Zhang, P.L. Wei, B.T. Zhang, F. Gou, Z.Y. Feng, Y.F. Mao, L. Yang, H. Zhang, N.F. Xu, J.K. Zhu, The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation, Plant Biotechnol. J. 12 (2014) 797-807.

[24]

H.B. Zhou, B. Liu, D.P. Weeks, M.H. Spalding, B. Yang, Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice, Nucleic Acids Res. 42 (2014) 10903-10914.

[25]

M.R. Li, X.X. Li, Z.J. Zhou, P.Z. Wu, M.C. Fang, X.P. Pan, Q.P. Lin, W.B. Luo, G.J. Wu, H.Q. Li, Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system, Front. Plant Sci. 7 (2016) 377.

[26]

L. Shen, Y.F. Hua, Y.P. Fu, J. Li, Q. Liu, X.Z. Jiao, G.W. Xin, J.J. Wang, X.C. Wang, C.J. Yan, K.J. Wang, Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice, Sci. China Life Sci. 60 (2017) 506-515.

[27]

C. Wang, L. Shen, Y.P. Fu, C.J. Yan, K.J. Wang, A simple CRISPR/Cas9 system for multiplex genome editing in rice, J. Genet. Genomics 42 (2015) 703-706.

[28]

X.R. Xie, X.L. Ma, Q.L. Zhu, D.C. Zeng, G.S. Li, Y.G. Liu, CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing, Mol. Plant 10 (2017) 1246-1249.

[29]

Y.J. Lin, Q. Zhang, Optimising the tissue culture conditions for high efficiency transformation of indica rice, Plant Cell Rep. 23 (2005) 540-547.

[30]

W.Z. Liu, X.R. Xie, X.L. Ma, J. Li, J.H. Chen, Y.G. Liu, DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations, Mol. Plant 8 (2015) 1431-1433.

[31]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method, Methods 25 (2001) 402-408.

[32]

L. Cong, F.A. Ran, D. Cox, S.L. Lin, R. Barretto, N. Habib, P.D. Hsu, X.B. Wu, W.Y. Jiang, L.A. Marraffini, F. Zhang, Multiplex genome engineering using CRISPR/Cas systems, Science 339 (2013) 819-823.

[33]

Z.Y. Feng, B.T. Zhang, W.N. Ding, X.D. Liu, D.L. Yang, P.L. Wei, F.Q. Cao, S.H. Zhu, F. Zhang, Y.F. Mao, J.K. Zhu, Efficient genome editing in plants using a CRISPR/Cas system, Cell Res. 23 (2013) 1229-1232.

[34]

Q.W. Shan, Y.P. Wang, J. Li, Y. Zhang, K.L. Chen, Z. Liang, K. Zhang, J.X. Liu, J.J. Xi, J.L. Qiu, C.X. Gao, Targeted genome modification of crop plants using a CRISPR-Cas system, Nat. Biotechnol. 31 (2013) 686-688.

[35]

Y.L. Zhang, H.R. Mu, Z.S. Shao, Y.X. Wang, L.Q. Jing, Y.L. Wang, L.X. Yang, Effects of ozone stress on amylose content and starch RVA profile in grains located at diffe-rent positions on a panicle, J. Appl. Ecol. 30 (2019) 4211-4221 (in Chinese with English abstract).

[36]

W. Jiranuntakul, C. Puttanlek, V. Rungsardthong, S. Puncha-arnon, D. Uttapap, Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches, J. Food Eng. 104 (2011) 246-258.

[37]

X.Z. Han, B.R. Hamaker, Amylopectin fine structure and rice starch paste breakdown, J. Cereal Sci. 34 (2001) 279-284.

[38]

C.J. Yan, X. Li, R. Zhang, J.M. Sui, G.H. Liang, X.P. Shen, S.L. Gu, M.H. Gu, Performance and inheritance of rice starch RVA profile characteristics, Rice Sci. 12 (2005) 39-47.

The Crop Journal
Pages 457-464
Cite this article:
Wang S, Yang Y, Guo M, et al. Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system. The Crop Journal, 2020, 8(3): 457-464. https://doi.org/10.1016/j.cj.2020.02.005

317

Views

9

Downloads

62

Crossref

N/A

Web of Science

55

Scopus

6

CSCD

Altmetrics

Received: 04 December 2019
Revised: 17 January 2020
Accepted: 19 February 2020
Published: 25 March 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return