AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Short Communication | Open Access

Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat

Jia Leia,1Jiawen Zhoua,1Haojie SunaWentao WanaJin XiaoaChunxia YuanaMiroslava KarafiátovábJaroslav DoleželbHaiyan Wanga( )Xiue Wanga
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, Jiangsu, China
Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc, Czech Republic

1 These authors contributed equally to this work.

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Haynaldia villosa is a wild relative of wheat and a valuable gene resource for wheat improvement. Owing to the limited number of probes available for fluorescence in situ hybridization (FISH), the resolution at which the karyotype of H. villosa can be characterized is poor, hampering accurate characterization of small segmental alien introgressions. We designed ten oligonucleotide probes using tandem repeats in DNA sequences derived from the short arm of H. villosa chromosome 6V (6VS). FISH with seven of them resulted in clear signals on H. villosa chromosomes. Using these, we constructed FISH karyotypes for H. villosa using oligo-6VS-1 and oligo-6VS-35 oligonucleotides and characterized the distribution of the two probes in five different H. villosa accessions. The new FISH probes can efficiently characterize H. villosa introgressions into wheat.

References

[1]

R. Zhang, B. Sun, J. Chen, A. Cao, L. Xing, Y. Feng, C. Lan, P. Chen, Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Haynaldia villas into common wheat, Theor. Appl. Genet. 129 (2016) 1975–1984.

[2]

Q. Zhang, Q. Li, X. Wang, H. Wang, S. Lang, Y. Wang, S. Wang, P. Chen, D. Liu, Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus, Euphytica 145 (2005) 317–320.

[3]

R. Zhao, H. Wang, J. Xiao, T. Bie, S. Cheng, Q. Jia, C. Yuan, R. Zhang, A. Cao, P. Chen, Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa, Theor. Appl. Genet. 126 (2013) 2921–2930.

[4]

L. Qi, M. Pumphrey, B. Friebe, P. Zhang, C. Qian, R. Bowden, M. Rouse, Y. Jin, B. Gill, A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat, Theor. Appl. Genet. 123 (2011) 159–167.

[5]

R. Zhang, Y. Cao, X. Wang, Y. Feng, P. Chen, Development and characterization of a Triticum aestivum-H. villosa T5VS·5DL translocation line with soft grain texture, J. Cereal. Sci. 51 (2010) 220–225.

[6]

R. Zhang, X. Wang, P. Chen, Molecular and cytogenetic characterization of a small alien-segment translocation line carrying the softness genes of Haynaldia villosa, Genome 55 (2012) 639–646.

[7]

R. Zhang, M. Zhang, X.E. Wang, P. Chen, Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Haynaldia villosa showed positive effect on bread-making quality of common wheat, Theor. Appl. Genet. 127 (2014) 523–533.

[8]

P. Vaccino, R. Banfi, M. Corbellini, C. De Pace, Improving the wheat genetic diversity for end-use grain quality by chromatin introgression from the wheat wild relative, Crop Sci. 50 (2010) 528–540.

[9]

W. Zhao, L. Qi, X. Gao, G. Zhang, J. Dong, Q. Chen, B. Friebe, B.S. Gill, Development and characterization of two new Triticum aestivum–Haynaldia villosa Robertsonian translocation lines T1DS·1V# 3L and T1DL·1V# 3S and their effect on grain quality, Euphytica 175 (2010) 343–350.

[10]

R. Zhang, F. Hou, Y. Feng, W. Zhang, M. Zhang, P. Chen, Characterization of a Triticum aestivum–Haynaldia villosa T2VS·2DL translocation line expressing a longer spike and more kernels traits, Theor. Appl. Genet. 128 (2015) 2415–2425.

[11]

R. Zhang, Y. Feng, H. Li, H. Yuan, J. Dai, A. Cao, L. Xing, H. Li, Cereal cyst nematode resistance gene CreV effective against Heterodera filipjevi transferred from chromosome 6VL of Haynaldia villosa to bread wheat, Mol. Breed. 36 (2016) 122.

[12]

E. Uslu, S. Reader, T. Miller, Characterization of Haynaldia villosa (L.) Candargy chromosomes by fluorescent in situ hybridization, Hereditas 131 (1999) 129–134.

[13]

W. Yuan, M. Tomita, Centromeric distribution of 350-family in Haynaldia villosa and its application to identifying Dasypyrum chromatin in the wheat genome, Hereditas 146 (2009) 58–66.

[14]

W. Zhang, R. Zhang, Y. Feng, T. Bie, P. Chen, Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin, Chin. Sci. Bull. 58 (2013) 890–897.

[15]

V. Grosso, A. Farina, A. Gennaro, D. Giorgi, S. Lucretti, Flow sorting and molecular cytogenetic identification of individual chromosomes of Haynaldia villosa L. (H. villosa) by a single DNA probe, PLoS One 7 (2012) e50151.

[16]

H. Sun, J. Song, J. Lei, X. Song, K. Dai, J. Xiao, C. Yuan, S. An, H. Wang, X. Wang, Construction and application of oligo-based FISH karyotype of Haynaldia villosa, J. Genet. Genom. 45 (2018) 463–466.

[17]

N. Petr, R. Laura, K. Andrea, V. Iva, N. Pavel, M. Jiří, TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads, Nucleic Acids Res. 12 (2017) e111.

[18]
W. Rychlik, OLIGO 7 primer analysis software 402, in: A. Yuryev (Ed.), PCR Primer Design. Methods in Molecular Biology, 402, Humana Press, Totowa, New Jersey, USA 2007, pp. 35–59.
[19]

J. Vrána, M. Kubaláková, H. Simková, J. Číhalíkovái, M.A. Lysák, J. Dolezel, Flow sorting of mitotic chromosomes in common wheat, Genetics 156 (2000) 2033–2041.

[20]

Á. Cuadrado, H. Golczyk, N. Jouve, A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected, Chromosome Res. 17 (2009) 755–762.

[21]

T. Lang, G. Li, H. Wang, Z. Yu, Q. Chen, E. Yang, S. Fu, Z. Tang, Z. Yang, Physical location of tandem repeats in the wheat genome and application for chromosome identification, Planta 249 (2019) 663–675.

[22]

Z. Xiao, S. Tang, L. Qiu, Z. Tang, S. Fu, Oligonucleotides and ND-FISH displaying different arrangements of tandem repeats and identification of Haynaldia villosa chromosomes in wheat backgrounds, Molecules 22 (2017) 973.

[23]

A. Schneider, M. Molnár-Láng, Polymorphism analysis using 1RS-specific molecular markers in rye cultivars (Secale cereal L.) of various origin, Cereal. Res. Commun. 36 (2008) 11–19.

[24]

G. Linc, E. Gaál, I. Molnár, D. Icsó, E. Badaeva, M. Molnár-Láng, Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship, PLoS One 12 (2017) e0173623.

[25]

M. Said, E. Hřibová, T.V. Danilova, M. Karafiátová, J. Čížková, B. Friebe, J. Doležel, B.S. Gill, J. Vrána, The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes, Theor. Appl. Genet. 131 (2018) 2213–2227.

The Crop Journal
Pages 676-681
Cite this article:
Lei J, Zhou J, Sun H, et al. Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. The Crop Journal, 2020, 8(4): 676-681. https://doi.org/10.1016/j.cj.2020.02.008

296

Views

5

Downloads

14

Crossref

N/A

Web of Science

13

Scopus

6

CSCD

Altmetrics

Received: 20 November 2019
Revised: 15 January 2020
Accepted: 04 March 2020
Published: 08 May 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return