AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Using genomic data to improve the estimation of general combining ability based on sparse partial diallel cross designs in maize

Xin Wanga,bZhenliang ZhangbYang XubPengchen LibXuecai ZhangcChenwu Xub( )
College of Information Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
International Maize and Wheat Improvement Center (CIMMYT), Mexico D.F. 06600, Mexico

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Evaluation of general combining ability (GCA) is crucial to hybrid breeding in maize. Although the complete diallel cross design can provide an efficient estimation, sparse partial diallel cross (SPDC) is more flexible in breeding practice. Using real and simulated data sets of partial diallel crosses between 266 maize inbred lines, this study investigated the performance of SPDC designs for estimating the GCA. With different distributions of parental lines involved in crossing (called random, balanced and unbalanced samplings), different numbers of hybrids were sampled as the training sets to estimate the GCA of the 266 inbred lines. In this process, three statistical approaches were applied. One obtained estimations through the ordinary least square (OLS) method, and the other two utilized genomic prediction (GP) to estimate the GCA. It was found that the coefficient of determination of each approach was always higher than the heritability of a target trait, showing that the GCA for maize inbred lines could be accurately predicted with SPDC designs. Both the GP approaches were more accurate than the OLS, particularly in the scenario for a low-heritability trait with a small sample size. Additionally, prediction results demonstrated that a big sample of hybrids could greatly help improve the accuracy. The random sampling of parental lines had little influence on the average accuracy. However, the prediction for lines that never or seldom involved in crossing might suffer from much lower accuracy.

References

[1]

G.F. Sprague, L.A. Tatum, General vs. specific combining ability in single crosses of corn, Agron. J. 34 (1942) 923–932.

[2]

C. Riedelsheimer, A. Czedik-Eysenberg, C. Grieder, J. Lisec, F. Technow, R. Sulpice, T. Altmann, M. Stitt, L. Willmitzer, A.E. Melchinger, Genomic and metabolic prediction of complex heterotic traits in hybrid maize, Nat. Genet. 44 (2012) 217–220.

[3]

J. Huang, H. Qi, X. Feng, Y. Huang, L. Zhu, B. Yue, General combining ability of most yield-related traits had a genetic basis different from their corresponding traits per se in a set of maize introgression lines, Genetica 141 (2013) 453–461.

[4]

H.A. Sadalla, M.O. Barznji, S.A. Kakarash, Full diallel crosses for estimation of genetic parameters in maize, Iraqi J. Agric. Sci. 48 (2017) 30–40.

[5]

X.M. Fan, Y.D. Zhang, D.P. Jeffers, Y.Q. Bi, M.S. Kang, X.F. Yin, Combining ability of yellow lines derived from CIMMYT populations for use in subtropical and tropical midaltitude maize production environments, Crop Sci. 58 (2018) 169–179.

[6]

A.J. Greenberg, S.R. Hackett, L.G. Harshman, A.G. Clark, A hierarchical Bayesian model for a novel sparse partial diallel crossing design, Genetics 185 (2010) 361–373.

[7]

O. Kempthorne, R. Curnow, The partial diallel cross, Biometrics 17 (1961) 229–250.

[8]

O. Kempthorne, A class of experimental designs using blocks of two plots, Ann. Math. Statist. (1953) 76–84.

[9]

M. Vivas, S.F. Silveira, A.P. Viana, A.T. Amaral, D.L. Cardoso, M.G. Pereira, Efficiency of circulant diallels via mixed models in the selection of papaya genotypes resistant to foliar fungal diseases, Gen. Mol. Res. 13 (2014) 4797–4804.

[10]

B. Griffing, Concept of general and specific combining ability in relation to diallel crossing systems, Aust. J. Biol. Sci. 9 (1956) 463–493.

[11]

J. Jinks, B. Hayman, The theory and analysis of diallel crosses, Genetics 43 (1953) 63–85.

[12]

C. Gardner, S. Eberhart, Analysis and interpretation of the variety cross diallel and related populations, Biometrics (1966) 439–452.

[13]

J.B. Miranda Filho, R. Vencovsky, The partial circulant diallel cross at the interpopulation level, Genet. Mol. Biol. 22 (1999) 249–255.

[14]

J. Crossa, P. Perez-Rodriguez, J. Cuevas, O. Montesinos-Lopez, D. Jarquin, G. de los Campos, J. Burgueno, J.M. Gonzalez-Camacho, S. Perez-Elizalde, Y. Beyene, S. Dreisigacker, R. Singh, X.C. Zhang, M. Gowda, M. Roorkiwal, J. Rutkoski, R.K. Varshney, Genomic selection in plant breeding: methods, models, and perspectives, Trends Plant Sci. 22 (2017) 961–975.

[15]

X. Wang, Y. Xu, Z. Hu, C. Xu, Genomic selection methods for crop improvement: current status and prospects, Crop J. 6 (2018) 330–340.

[16]

J. Crossa, G. de los Campos, P. Perez, D. Gianola, J. Burgueno, J. Luis Araus, D. Makumbi, R.P. Singh, S. Dreisigacker, J. Yan, V. Arief, M. Banziger, H.J. Braun, Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers, Genetics 186 (2010) 713–724.

[17]

J. Crossa, Y. Beyene, S. Kassa, P. Pérez, J.M. Hickey, C. Chen, G. de los Campos, J. Burgueño, V.S. Windhausen, E. Buckler, Genomic prediction in maize breeding populations with genotyping-by-sequencing, G3-Genes Genomics Genet. 3 (2013) 1903–1926.

[18]

F. Technow, C. Riedelsheimer, T.A. Schrag, A.E. Melchinger, Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects, Theor. Appl. Genet. 125 (2012) 1181–1194.

[19]

S. Xu, D. Zhu, Q. Zhang, Predicting hybrid performance in rice using genomic best linear unbiased prediction, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 12456–12461.

[20]

X. Wang, Y. Xu, P. Li, M. Liu, C. Xu, Z. Hu, Efficiency of linear selection index in predicting rice hybrid performance, Mol. Breed. 39 (2019) 77.

[21]

P.M. VanRaden, Efficient methods to compute genomic predictions, J. Dairy Sci. 91 (2008) 4414–4423.

[22]

T.H. Meuwissen, B.J. Hayes, M.E. Goddard, Prediction of total genetic value using genome-wide dense marker maps, Genetics 157 (2001) 1819–1829.

[23]

R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B (1996) 267–288.

[24]

O. González-Recio, G.J. Rosa, D. Gianola, Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits, Livest. Sci. 166 (2014) 217–231.

[25]

D. Habier, R.L. Fernando, K. Kizilkaya, D.J. Garrick, Extension of the Bayesian alphabet for genomic selection, BMC Bioinformatics 12 (2011) 186.

[26]

J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J. Stat. Software 33 (2010) 1–22.

[27]

G. de Los Campos, D. Gianola, G.J. Rosa, K.A. Weigel, J. Crossa, Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods, Genet. Res. 92 (2010) 295–308.

[28]

J. González-Camacho, G. de Los Campos, P. Pérez, D. Gianola, J. Cairns, G. Mahuku, R. Babu, J. Crossa, Genome-enabled prediction of genetic values using radial basis function neural networks, Theor. Appl. Genet. 125 (2012) 759–771.

[29]

G. Moser, B. Tier, R.E. Crump, M.S. Khatkar, H.W. Raadsma, A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers, Genet. Sel. Evol. 41 (2009) 56.

[30]

H.H. Neves, R. Carvalheiro, S.A. Queiroz, A comparison of statistical methods for genomic selection in a mice population, BMC Genet. 13 (2012) 100.

[31]

X. Wang, Z. Yang, C. Xu, A comparison of genomic selection methods for breeding value prediction, Sci. Bull. 60 (2015) 925–935.

[32]

R. Bernardo, Prediction of maize single-cross performance using RFLPs and information from related hybrids, Crop Sci. 34 (1994) 20–25.

[33]

R. Bernardo, Genetic models for predicting maize single-cross performance in unbalanced yield trial data, Crop Sci. 35 (1995) 141–147.

[34]

R. Bernardo, Best linear unbiased prediction of maize single-cross performance, Crop Sci. 36 (1996) 50–56.

[35]

C.R. Henderson, Best linear unbiased estimation and prediction under a selection model, Biometrics 31 (1975) 423–447.

[36]
D.G. Butler, B.R. Cullis, A.R. Gilmour, B.J. Gogel, Mixed Modelsfor S Language Environments: ASReml-R Reference Manual, Queensland Department of Primary Industries and Fisheries, Australia, 2009.
[37]

D.C. Kadam, S.M. Potts, M.O. Bohn, A.E. Lipka, A.J. Lorenz, Genomic prediction of single crosses in the early stages of a maize hybrid breeding pipeline, G3-Genes Genomics Genet. 6 (2016) 3443–3453.

[38]

F. Technow, T.A. Schrag, W. Schipprack, E. Bauer, H. Simianer, A.E. Melchinger, Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize, Genetics 197 (2014) 1343–1355.

[39]

C.R. Werner, L. Qian, K.P. Voss-Fels, A. Abbadi, G. Leckband, M. Frisch, R.J. Snowdon, Genome-wide regression models considering general and specific combining ability predict hybrid performance in oilseed rape with similar accuracy regardless of trait architecture, Theor. Appl. Genet. 131 (2018) 299–317.

[40]

M. Velez-Torres, J.J. Garcia-Zavala, M. Hernandez-Rodriguez, R. Lobato-Ortiz, J.J. Lopez-Reynoso, I. Benitez-Riquelme, J.A. Mejia-Contreras, G. Esquivel-Esquivel, J.D. Molina-Galan, P. Perez-Rodriguez, X.C. Zhang, Genomic prediction of the general combining ability of maize lines (Zea mays L.) and the performance of their single crosses, Plant Breed. 137 (2018) 379–387.

[41]

W.N. Venables, B.D. Ripley, Modern Applied Statistics with S, 4th ed Springer, New York, USA, 2002.

[42]

Y. Xu, X. Wang, X. Ding, X. Zheng, Z. Yang, C. Xu, Z. Hu, Genomic selection of agronomic traits in hybrid rice using an NCII population, Rice 11 (2018) 32.

[43]

X. Wang, L. Li, Z. Yang, X. Zheng, S. Yu, C. Xu, Z. Hu, Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design Ⅱ, Heredity 118 (2017) 302–310.

[44]

A.J.S. Reis, L.J. Chaves, J.B. Duarte, E.M. Brasil, Prediction of hybrid means from a partial circulant diallel table using the ordinary least square and the mixed model methods, Genet. Mol. Biol. 28 (2005) 314–320.

[45]

F. Alves, A. Granato, G. Galli, D. Lyra, R. Fritsche-Neto, G. de los Campos, Bayesian analysis and prediction of hybrid performance, Plant Methods 15 (2019) 14.

[46]

R.D. Veiga, D.F. Ferreira, M.A.P. Ramalho, Efficiency of circulant diallels in parental choice, Pesq. Agropec. Bras. 35 (2000) 1395–1406.

[47]

K. Dias, H. Piepho, L. Guimarães, P. Guimarães, S. Parentoni, M. Pinto, R. Noda, J. Magalhães, C. Guimarães, A. Garcia, Novel strategies for genomic prediction of untested single-cross maize hybrids using unbalanced historical data, Theor. Appl. Genet. (2019) 1–13.

[48]

R. Fristche-Neto, D. Akdemir, J.L. Jannink, Accuracy of genomic selection to predict maize single-crosses obtained through different mating designs, Theor. Appl. Genet. 131 (2018) 1153–1162.

[49]

H. Zhang, L. Yin, M. Wang, X. Yuan, X. Liu, Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations, Front. Genet. 10 (2019) 189.

[50]

H.D. Daetwyler, R. Pong-Wong, B. Villanueva, J.A. Woolliams, The impact of genetic architecture on genome-wide evaluation methods, Genetics 185 (2010) 1021–1031.

[51]

M.F. Resende, P. Muñoz, M.D. Resende, D.J. Garrick, R.L. Fernando, J.M. Davis, E.J. Jokela, T.A. Martin, G.F. Peter, M. Kirst, Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.), Genetics 190 (2012) 1503–1510.

[52]

T. Guo, H. Li, J. Yan, J. Tang, J. Li, Z. Zhang, L. Zhang, J. Wang, Performance prediction of F1 hybrids between recombinant inbred lines derived from two elite maize inbred lines, Theor. Appl. Genet. 126 (2013) 189–201.

[53]

H. Qi, J. Huang, Q. Zheng, Y. Huang, R. Shao, L. Zhu, Z. Zhang, F. Qiu, G. Zhou, Y. Zheng, Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines, Theor. Appl. Genet. 126 (2013) 369–377.

[54]

Z.Q. Zhou, C.S. Zhang, X.H. Lu, L.W. Wang, Z.F. Hao, M.S. Li, D.G. Zhang, H.J. Yong, H.Y. Zhu, J.F. Weng, X.H. Li, Dissecting the genetic basis underlying combining ability of plant height related traits in maize, Front. Plant Sci. 9 (2018) 1117.

The Crop Journal
Pages 819-829
Cite this article:
Wang X, Zhang Z, Xu Y, et al. Using genomic data to improve the estimation of general combining ability based on sparse partial diallel cross designs in maize. The Crop Journal, 2020, 8(5): 819-829. https://doi.org/10.1016/j.cj.2020.04.012

248

Views

3

Downloads

14

Crossref

N/A

Web of Science

15

Scopus

5

CSCD

Altmetrics

Received: 29 December 2019
Revised: 03 May 2020
Accepted: 31 May 2020
Published: 03 July 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return