AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (206.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Editorial | Open Access

Crop genome editing: A way to breeding by design

Chuanxiao Xiea( )Yunbi Xub,cJianmin Wand
National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56130, Texcoco, Mexico
Chinese Academy of Agricultural Sciences, Beijing 100081, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

References

[1]

J.A. Foley, N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C. O’Connell, D.K. Ray, P.C. West, C. Balzer, E.M. Bennett, S.R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, D.P.M. Zaks, Solutions for a cultivated planet, Nature 478 (2011) 337–342.

[2]

G. Fischer, M. Shah, F.N. Tubiello, H. van Velhuizen, Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080, Philos. Trans. R. Soc. B-Biol. Sci. 360 (2005) 2067–2083.

[3]

R. Mittler, E. Blumwald, Genetic engineering for modern agriculture: challenges and perspectives, Annu. Rev. Plant Biol. 61 (2010) 443–462.

[4]

K. Hua, J. Zhang, J.R. Botella, C. Ma, F. Kong, B. Liu, J.K. Zhu, Perspectives on the application of genome-editing technologies in crop breeding, Mol. Plant 12 (2019) 1047–1059.

[5]

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna, E. Charpentier, A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity, Science 337 (2012) 816–821.

[6]

K. Chen, Y. Wang, R. Zhang, H. Zhang, C. Gao, CRISPR/Cas genome editing and precision plant breeding in agriculture, Annu. Rev. Plant Biol. 70 (2019) 667–697.

[7]

K. Hua, J. Zhang, J.R. Botella, C. Ma, F. Kong, B. Liu, J.K. Zhu, Perspectives on the application of genome-editing technologies in crop breeding, Mol. Plant 12 (2019) 1047–1059.

[8]

L.G. Lowder, D. Zhang, N.J. Baltes, J.W. Paul, X. Tang, X. Zheng, D.F. Voytas, T.-F. Hsieh, Y. Zhang, Y. Qi, A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation, Plant Physiol. 169 (2015) 971–985.

[9]

Y. Zhao, C. Zhang, W. Liu, W. Gao, C. Liu, G. Song, W.X. Li, L. Mao, B. Chen, Y. Xu, X. Li, C. Xie, An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design, Sci. Rep. 6 (2016) 23890.

[10]

J. Li, X. Meng, Y. Zong, K. Chen, H. Zhang, J. Liu, J. Li, C. Gao, Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9, Nat. Plants 2 (2016) 16139.

[11]

Y. Lu, J.K. Zhu, Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system, Mol. Plant. 10 (2017) 523–525.

[12]

Y. Zong, Y. Wang, C. Li, R. Zhang, K. Chen, Y. Ran, J.-L. Qiu, D. Wang, C. Gao, Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion, Nat. Biotechnol. 35 (2017) 438–440.

[13]

Z.P. Wang, H.L. Xing, L. Dong, H.Y. Zhang, C.Y. Han, X.C. Wang, Q.J. Chen, Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation, Genome Biol. 16 (2015) 144.

[14]

L. Yan, S. Wei, Y. Wu, R. Hu, H. Li, W. Yang, Q. Xie, High-efficiency genome editing in Arabidopsis using YAO promoter-rriven CRISPR/Cas9 system, Mol. Plant 8 (2015) 1820–1823.

[15]

X. Gao, J. Chen, X. Dai, D. Zhang, Y. Zhao, An effective strategy for reliably isolating heritable and Cas9-Free arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing, Plant Physiol. 171 (2016) 1794–1800.

[16]

D. Rodríguez-Leal, Z.H. Lemmon, J. Man, M.E. Bartlett, Z.B. Lippman, Engineering quantitative trait variation for crop improvement by genome editing, Cell 171 (2017) 470–480.

[17]

I. Khanday, D. Skinner, B. Yang, R. Mercier, V. Sundaresan, A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds, Nature 565 (2019) 91–95.

[18]

C. Wang, Q. Liu, Y. Shen, Y. Hua, J. Wang, J. Lin, M. Wu, T. Sun, Z. Cheng, R. Mercier, K. Wang, Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes, Nat. Biotechnol. 37 (2019) 283–286.

[19]

A.R. Fernie, J. Yan, De novo domestication: an alternative route toward new crops for the future, Mol. Plant 12 (2019) 615–631.

[20]

B. Jusiak, S. Cleto, P. Perez-Piñera, T.K. Lu, Engineering synthetic gene circuits in living cells with CRISPR technology, Trends Biotechnol. 34 (2016) 535–547.

[21]

A.J. Slade, S.I. Fuerstenberg, D. Loeffler, M.N. Steine, D. Facciotti, A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING, Nat. Biotechnol. 23 (2004) 75–81.

[22]

S.S. Bharat, S. Li, J. Li, L. Yan, L. Xia, Base editing in plants: Current status and challenges, Crop J. 8 (3) (2020) 384–395.

[23]

Y. Li, J. Zhu, H. Wu, C. Liu, C. Huang, J. Lan, Y. Zhao, C. Xie, Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize, Crop J. 8 (3) (2020) 449–456.

[24]

R. Qin, S. Liao, J. Li, H. Li, X. Liu, J. Yang, P. Wei, Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice, Crop J. 8 (3) (2020) 396–402.

[25]

F. Wang, C. Zhang, W. Xu, S. Yuan, J. Song, L. Li, J. Zhao, J. Yang, Developing high-efficiency base editors by combining optimized synergistic core components with new types of nuclear localization signal peptide, Crop J. 8 (3) (2020) 408–417.

[26]

C. Zhang, F. Wang, S. Zhao, G. Kang, J. Song, L. Li, J. Yang, Highly efficient CRISPR-SaKKH tools for plant multiplex cytosine base editing, Crop J. 8 (3) (2020) 418–423.

[27]

B. Zetsche, J.S. Gootenberg, O.O. Abudayyeh, I.M. Slaymaker, K.S. Makarova, P. Essletzbichler, S.E. Volz, J. Joung, J. Van Der Oost, A. Regev, E.V. Koonin, F. Zhang, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell 163 (2015) 759–771.

[28]

D.C. Swarts, J. van der Oost, M. Jinek, Structural aasis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a, Mol. Cell 66 (2017) 221–233.

[29]

X. Hu, X. Meng, J. Li, K. Wang, H. Yu, Improving the efficiency of the CRISPR-Cas12a system with tRNA-crRNA arrays, Crop J. 8 (3) (2020) 403–407.

[30]

T. Langner, S. Kamoun, K. Belhaj, CRISPR crops: plant genome editing toward disease resistance, Annu. Rev. Phytopathol. 56 (2018) 479–512.

[31]

Y. Xu, F. Wang, Z. Chen, J. Wang, W.-Q. Li, F. Fan, Y. Tao, L. Zhao, W. Zhong, Q.H. Zhu, J. Yang, Intron-targeted gene insertion in rice using CRISPR/Cas9: a case study of the Pi-ta gene, Crop J. 8 (3) (2020) 424–431.

[32]

Y. Nishiba, S. Furuta, M. Hajika, K. Igita, I. Suda, Hexanal accumulation and DETBA value in homogenate of soybean seeds lacking two or three lipoxygenase isozymes, J. Agric. Food Chem. 43 (1995) 738–741.

[33]

J. Wang, H. Kuang, Z. Zhang, Y. Yang, L. Yan, M. Zhang, S. Song, Y. Guan, Generation of seed lipoxygenase-free soybean using CRISPR-Cas9, Crop J. 8 (3) (2020) 432–439.

[34]

S. Wang, Y. Yang, M. Guo, C. Zhong, C. Yan, S. Sun, Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system, Crop J. 8 (3) (2020) 457–464.

[35]

X. Qi, H. Wu, H. Jiang, J. Zhu, C. Huang, X. Zhang, C. Liu, B. Cheng, Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity, Crop J. 8 (3) (2020) 440–448.

[36]

X. Meng, H. Yu, Y. Zhang, F. Zhuang, X. Song, S. Gao, C. Gao, J. Li, Construction of a genome-wide mutant library in rice using CRISPR/Cas9, Mol. Plant 10 (2017) 1238–1241.

[37]

X. Ma, Q. Zhang, Q. Zhu, W. Liu, Y. Chen, R. Qiu, B. Wang, Z. Yang, H. Li, Y. Lin, Y. Xie, R. Shen, S. Chen, Z. Wang, Y. Chen, J. Guo, L. Chen, X. Zhao, Z. Dong, Y.G. Liu, A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants, Mol. Plant 8 (2015) 1274–1284.

[38]

M. Wang, Y. Mao, Y. Lu, X. Tao, J.K. Zhu, Multiplex gene editing in rice using the CRISPR-Cpf1 system, Mol. Plant 10 (2017) 1011–1013.

[39]

C. Li, C. Liu, X. Qi, Y. Wu, X. Fei, L. Mao, B. Cheng, X. Li, C. Xie, RNA-guided Cas9 as an in vivo desired-target mutator in maize, Plant Biotechnol. J. 15 (2017) 1566–1576.

[40]

L. Dong, X. Qi, J. Zhu, C. Liu, X. Zhang, B. Cheng, L. Mao, C. Xie, Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing, Plant Biotechnol. J. 17 (2019) 1853–1855.

[41]

T. Luo, T. Zou, G. Yuan, Z. He, W. Li, Y. Tao, M. Liu, D. Zhou, H. Zhao, J. Zhu, Y. Liang, Q. Deng, S. Wang, A. Zheng, H. Liu, L. Wang, P. Li, S. Li, Less and shrunken pollen 1 (LSP1) encodes a member of the ABC transporter family required for pollen wall development in rice (Oryza sativa L.), Crop J. 8 (3) (2020) 492–504.

[42]

E. Nambara, A. Marion-Poll, Abscisic acid biosynthesis and catabolism, Annu. Rev. Plant Biol. 56 (2005) 165–185.

[43]

Y. Zhang, X. Wang, Y. Luo, L. Zhang, Y. Yao, L. Han, Z. Chen, L. Wang, Y. Li, OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response, Crop J. 8 (3) (2020) 480–491.

[44]

S. Huang, S. Xin, G. Xie, J. Han, Z. Liu, B. Wang, S. Zhang, Q. Wu, X. Cheng, Mutagenesis reveals that the rice OsMPT3 gene is an important osmotic regulatory factor, Crop J. 8 (3) (2020) 465–479.

[45]

J.D. Sander, J.K. Joung, CRISPR-Cas systems for editing, regulating and targeting genomes, Nat. Biotechnol. 32 (2014) 347–355.

[46]

J. Martin-Laffon, M. Kuntz, A.E. Ricroch, Worldwide CRISPR patent landscape shows strong geographical biases, Nat. Biotechnol. 37 (2019) 613–620.

[47]

J.D. Wolt, K. Wang, B. Yang, The regulatory status of genome-edited crops, Plant Biotechnol. J. 14 (2016) 510–518.

The Crop Journal
Pages 379-383
Cite this article:
Xie C, Xu Y, Wan J. Crop genome editing: A way to breeding by design. The Crop Journal, 2020, 8(3): 379-383. https://doi.org/10.1016/j.cj.2020.05.001

231

Views

4

Downloads

6

Crossref

N/A

Web of Science

5

Scopus

1

CSCD

Altmetrics

Published: 02 June 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return