AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (395.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Stability and transferability assessment of the cotton fiber strength QTL qFS-c7-1 on chromosome A07

David D. Fanga( )Linghe ZengbGregory N. Thyssena,cChristopher D. DelhomdEfrem BecherebDon C. JonesePing Lia
Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA 70124, USA
Crop Genetics Research Unit, USDA-ARS, Stoneville, MS 38776, USA
Cotton Chemistry & Utilization Unit, USDA-ARS-SRRC, New Orleans, LA 70124, USA
Cotton Structure and Quality Research Unit, USDA-ARS-SRRC, New Orleans, LA 70124, USA
Cotton Incorporated, Cary, NC 27513, USA
Show Author Information

Abstract

Previously we identified a major cotton fiber strength QTL (qFS-c7-1) on chromosome A07 using a multi-parent advanced generation intercross (MAGIC) population. To assess the stability and transferability of this QTL and its utility in cotton breeding, we made ten new populations. These populations were developed from crosses between MAGIC recombinant inbred lines, or between cotton cultivars that are different from the MAGIC parents. A total of 2801 F2 plants were grown and their fiber quality traits were measured. We also selected a subset of F3 seeds from two populations, and grew F3 progeny plots to further evaluate the stability of this QTL. Our results showed that the peak of qFS-c7-1 is at 70–72 Mb region. This QTL had a major effect on fiber strength explaining 21.9% phenotypic variance. Its effect on other fiber quality attributes such as micronaire, short fiber content, length and uniformity varied between populations, and no effect on fiber elongation was observed. The QTL effects were stable in the populations analyzed, and in different generations of the same population. The SSR and SNP markers near and within the QTL peak reported herein will assist selecting superior fiber quality traits in breeding, with a recommendation that the parental cotton lines should be analyzed using the seven DNA markers within the QTL peak before fully implementing marker assisted selection in a cotton breeding program.

References

[1]

H. Wang, C. Huang, H. Guo, X. Li, W. Zhao, B. Dai, Z. Yan, Z. Lin, QTL mapping for fiber and yield traits in upland cotton under multiple environments, PLoS One 10 (2015), e0130742.

[2]

J.M. Lacape, D. Llewellyn, J. Jacobs, T. Arioli, D. Becker, S. Calhoun, Y. Al-Ghazi, S. Liu, O. Palai, S. Georges, M. Giband, H. de Assuncao, P.A. Barroso, M. Claverie, G. Gawryziak, J. Jean, M. Vialle, C. Viot, Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population, BMC Plant Biol. 10 (2010) 132.

[3]

Z. Ma, S. He, X. Wang, J. Sun, Y. Zhang, G. Zhang, L. Wu, Z. Li, Z. Liu, G. Sun, Y. Yan, Y. Jia, J. Yang, Z. Pan, Q. Gu, X. Li, Z. Sun, P. Dai, Z. Liu, W. Gong, J. Wu, M.i. Wang, H. Liu, K. Feng, H. Ke, J. Wang, H. Lan, G. Wang, J. Peng, N. Wang, L. Wang, B. Pang, Z. Peng, R. Li, S. Tian, X. Du, Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield, Nat. Genet. 50 (6) (2018) 803–813.

[4]

N. Brown, P. Kumar, R. Singh, E.d. Lubbers, B.T. Campbell, G.O. Myers, R.J. Wright, J. Subramani, D. Jones, A.H. Paterson, P.W. Chee, Evaluation of a chromosome segment from Gossypium barbadense harboring the fiber length QTL qFL-Chr.25 in four diverse upland cotton genetic backgrounds, Crop Sci. 59 (6) (2019) 2621–2633.

[5]
D.D. Fang, Molecular breeding, in: D.D. Fang, R.G. Percy (Eds.), Cotton, 2ndEdition., ASA-CSSA-CSSA, Madison, WI, USA, 2015, pp. 255–288.
[6]

O.A. Gutiérrez, A.F. Robinson, J.N. Jenkins, J.C. McCarty, M.J. Wubben, F.E. Callahan, R.L. Nichols, Identification of QTL regions and SSR markers associated with resistance to reniform nematode in Gossypium barbadense L. accession GB713, Theor. Appl. Genet. 122 (2) (2011) 271–280.

[7]

D.D. Fang, J. Xiao, P.C. Canci, R.G. Cantrell, A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.), Theor. Appl. Genet. 120 (5) (2010) 943–953.

[8]

J. Xiao, D.D. Fang, M. Bhatti, B. Hendrix, R. Cantrell, A SNP haplotype associated with a gene resistant to Xanthomonas axonopodis pv. malvacearum in upland cotton (Gossypium hirsutum L.), Mol. Breed. 25 (4) (2010) 593–602.

[9]

M.H. Ellis, W.N. Stiller, T. Phongkham, W.A. Tate, V.J. Gillespie, W.J. Gapare, Q.-H. Zhu, D.J. Llewellyn, I.W. Wilson, Molecular mapping of bunchy top disease resistance in Gossypium hirsutum L., Euphytica 210 (1) (2016) 135–142.

[10]

X. Shen, Z. Cao, R. Singh, E.L. Lubbers, P. Xu, C.W. Smith, A.H. Paterson, P.W. Chee, Efficacy of qFL-chr1, a quantitative trait locus for fiber length in cotton (Gossypium spp.), Crop Sci. 51 (5) (2011) 2005–2010.

[11]

Z. Zhang, J. Li, M. Jamshed, Y. Shi, A. Liu, J. Gong, S. Wang, J. Zhang, F. Sun, F. Jia, Q. Ge, L. Fan, Z. Zhang, J. Pan, S. Fan, Y. Wang, Q. Lu, R. Liu, X. Deng, X. Zou, X. Jiang, P. Liu, P. Li, M.S. Iqbal, C. Zhang, J. Zou, H. Chen, Q. Tian, X. Jia, B. Wang, N. Ai, G. Feng, Y. Wang, M. Hong, S. Li, W. Lian, B.o. Wu, J. Hua, C. Zhang, J. Huang, A. Xu, H. Shang, W. Gong, Y. Yuan, Genome‐wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield‐related traits in a Gossypium hirsutum recombinant inbred line population, Plant Biotechnol. J. 18 (1) (2020) 239–253.

[12]

T. Zhang, Y. Yuan, J. Yu, W. Guo, R.J. Kohel, Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection, Theor. Appl. Genet. 106 (2) (2003) 262–268.

[13]

A.J. Reinisch, J. Dong, C.L. Brubaker, D.M. Stelly, J.F. Wendel, A.H. Paterson, A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense - chromosome organization and evolution in a disomic polyploid genome, Genetics 138 (1994) 829–847.

[14]

J.I. Said, Z. Lin, X. Zhang, M. Song, J. Zhang, A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton, BMC Genomics 14 (2013) 776.

[15]

M. Wang, L. Tu, M. Lin, Z. Lin, P. Wang, Q. Yang, Z. Ye, C. Shen, J. Li, L. Zhang, X. Zhou, X. Nie, Z. Li, K. Guo, Y. Ma, C. Huang, S. Jin, L. Zhu, X. Yang, L. Min, D. Yuan, Q. Zhang, K. Lindsey, X. Zhang, Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication, Nat. Genet. 49 (4) (2017) 579–587.

[16]
D.D. Fang, Cotton fiber genes and stable quantitative trait loci, in: D.D. Fang(Ed.), Cotton Fiber: Physics, Chemistry and Biology, Springer-NaturePublishing Group, Cham, Switzerland, 2018, pp. 151–178.
[17]

L. Fang, Q. Wang, Y. Hu, Y. Jia, J. Chen, B. Liu, Z. Zhang, X. Guan, S. Chen, B. Zhou, G. Mei, J. Sun, Z. Pan, S. He, S. Xiao, W. Shi, W. Gong, J. Liu, J. Ma, C. Cai, X. Zhu, W. Guo, X. Du, T. Zhang, Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits, Nat. Genet. 49 (7) (2017) 1089–1098.

[18]

K.L. Hugie, D.D. Fang, C.W. Smith, P. Li, L.L. Hinze, S.S. Hague, D.C. Jones, Utility assessment of published microsatellite markers for fiber length and bundle strength QTL in a Cotton breeding program, Crop Sci. 56 (6) (2016) 2983–2995.

[19]

K. Zhang, J. Zhang, J. Ma, S. Tang, D. Liu, Z. Teng, D. Liu, Z. Zhang, Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.), Mol. Breed. 29 (2) (2012) 335–348.

[20]

T. Zhang, N. Qian, X. Zhu, H. Chen, S. Wang, H. Mei, Y. Zhang, Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China, PLoS One 8 (2013) e57220.

[21]

Z. Zhang, Q. Ge, A. Liu, J. Li, J. Gong, H. Shang, Y. Shi, T. Chen, Y. Wang, K.K. Palanga, J. Muhammad, Q. Lu, X. Deng, Y. Tan, R. Liu, X. Zou, H. Rashid, M.S. Iqbal, W. Gong, Y. Yuan, Construction of a high-density genetic map and its application to QTL identification for fiber strength in upland cotton, Crop Sci. 57 (2) (2017) 774–788.

[22]

X. Fang, X. Liu, X. Wang, W. Wang, D. Liu, J. Zhang, D. Liu, Z. Teng, Z. Tan, F. Liu, F. Zhang, M. Jiang, X. Jia, J. Zhong, J. Yang, Z. Zhang, Fine-mapping qFS07.1 controlling fiber strength in upland cotton (Gossypium hirsutum L.), Theor. Appl. Genet. 130 (4) (2017) 795–806.

[23]

L. Ma, Y. Zhao, Y. Wang, L. Shang, J. Hua, QTLs analysis and validation for fiber quality traits using maternal backcross population in Upland cotton, Front. Plant Sci. 8 (2017) 2168.

[24]

G.N. Thyssen, J.N. Jenkins, J.C. McCarty, L. Zeng, B.T. Campbell, C.D. Delhom, M.S. Islam, P. Li, D.C. Jones, B.D. Condon, D.D. Fang, Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.), Theor. Appl. Genet. 132 (4) (2019) 989–999.

[25]

C. Zhang, L. Li, Q. Liu, L. Gu, J. Huang, H. Wei, H. Wang, S. Yu, Identification of loci and candidate genes responsible for fiber length in upland cotton (Gossypium hirsutum L.) via association mapping and linkage analyses, Front. Plant Sci. 10 (2019) 53.

[26]

J.N. Jenkins, J.C. McCarty Jr., O.A. Gutierrez, R.W. Hayes, D.T. Bowman, C.E. Watson, D.C. Jones, Registration of RMUP-C5, a random mated population of upland cotton germplasm, J. Plant Reg. 2 (3) (2008) 239–242.

[27]

M.S. Islam, G.N. Thyssen, J.N. Jenkins, L. Zeng, C.D. Delhom, J.C. McCarty, D.D. Deng, D.J. Hinchliffe, D.C. Jones, D.D. Fang, A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton, BMC Genomics 17 (2016) 903.

[28]

D.D. Fang, J.N. Jenkins, D.D. Deng, J.C. McCarty, P. Li, J. Wu, Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.), BMC Genomics 15 (2014) 397.

[29]

C.W. Smith, S. Hague, P.S. Thaxton, E. Hequet, D. Jones, Registration of eight extra-long staple Upland cotton germplasm lines, J Plant Reg 3 (1) (2009) 81–85.

[30]

E. Bechere, D.D. Fang, H. Kebede, R.G. Hardin, M.S. Islam, P. Li, J. Scheffler, Quantitative trait loci analysis for net ginning energy requirements in upland cotton (Gossypium hirsutum L.), Euphytica 213 (2017) 160.

[31]

W.R. Meredith, Registration of MD 52ne high fiber quality cotton germplasm and recurrent parent MD 90ne, Crop Sci. 45 (2005) 806–807.

[32]

J. Foulk, W. Meredith, D. McAlister, D. Luke, Fiber and yarn properties improve with new cotton cultivar, J. Cotton Sci. 13 (2009) 212–220.

[33]

W.R. Meredith Jr., Registration of MD 15 upland cotton germplasm, Crop Sci. 46 (2006) 2722–2723.

[34]

P.M. Thaxton, C.W. Smith, R. Cantrell, Registration of TAM 98D–102 and TAM 98D–99ne upland cotton germplasm lines with high fiber strength, Crop Sci. 4 (2005) 1668–1669.

[35]

J. Zhang, A. Abdelraheem, R. Flynn, Genetic gains of Acala 1517 cotton since 1926, Crop Sci. 59 (2019) 1052–1061.

[36]

F.M. Bourland, D.C. Jones, Registration of ‘UA48’ cotton cultivar, J. Plant Regist. 6 (2012) 15–18.

[37]

G.N. Thyssen, D.D. Fang, R.B. Turley, C. Florane, P. Li, M. Naoumkina, Next generation genetic mapping of the Ligon-lintless-2 (Li(2)) locus in upland cotton (Gossypium hirsutum L.), Theor. Appl. Genet. 127 (2014) 2183–2192.

[38]
S.A.S. Institute, JMP® 13 Basic Analysis, SAS Institute Inc., SAS Campus Drive, Cary, NC, USA, 2017.
[39]
J.W. Van Ooijen, MapQTL 6, Software for The Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species, Kyazma, B.V., Wageningen, the Netherlands, 2009.
[40]

T. Zhang, Y. Hu, W. Jiang, L. Fang, X.Y. Guan, J. Chen, J. Zhang, C.A. Saski, B.E. Scheffler, D.M. Stelly, A.M. Hulse-Kemp, Q. Wan, B. Liu, C. Liu, S. Wang, M. Pan, Y. Wang, D. Wang, W. Ye, L. Chang, W. Zhang, Q. Song, R.C. Kirkbride, X. Chen, E. Dennis, D.J. Llewellyn, D.G. Peterson, P. Thaxton, D.C. Jones, Q. Wang, X. Xu, H. Zhang, H. Wu, L. Zhou, G. Mei, S. Chen, Y. Tian, D. Xiang, X. Li, J. Ding, Q. Zuo, L. Tao, Y. Liu, J. Li, Y. Lin, Y. Hui, Z. Cao, C. Cai, X. Zhu, Z. Jiang, B. Zhou, W. Guo, R. Li, J.Z. Chen, Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement, Nat. Biotechnol. 33 (5) (2015) 531–537.

[41]

M. Wang, L. Tu, D. Yuan, D. Zhu, C. Shen, J. Li, F. Liu, L. Pei, P. Wang, G. Zhao, Z. Ye, H. Huang, F. Yan, Y. Ma, L. Zhang, M. Liu, J. You, Y. Yang, Z. Liu, F. Huang, B. Li, P. Qiu, Q. Zhang, L. Zhu, S. Jin, X. Yang, L. Min, G. Li, L. Chen, H. Zheng, K. Lindsey, Z. Lin, J.A. Udall, X. Zhang, Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense, Nat. Genet. 51 (2) (2019) 224–229.

[42]

D.D. Fang, L.L. Hinze, R.G. Percy, P. Li, D. Deng, G.N. Thyssen, A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (Gossypium hirsutum L.) cultivars from major cotton-growing countries, Euphytica 191 (3) (2013) 391–401.

[43]

M.S. Islam, L. Zeng, G.N. Thyssen, C.D. Delhom, H.J. Kim, P. Li, D.D. Fang, Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes, Theor. Appl. Genet. 129 (6) (2016) 1071–1086.

[44]

M.H.J. van der Sluijs, Impact of the ginning method on fiber quality and textile processing performance of long staple upland cotton, Text. Res. J. 85 (15) (2015) 1579–1589.

The Crop Journal
Pages 380-386
Cite this article:
Fang DD, Zeng L, Thyssen GN, et al. Stability and transferability assessment of the cotton fiber strength QTL qFS-c7-1 on chromosome A07. The Crop Journal, 2021, 9(2): 380-386. https://doi.org/10.1016/j.cj.2020.06.016

273

Views

2

Downloads

4

Crossref

N/A

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 27 February 2020
Revised: 14 June 2020
Accepted: 22 July 2020
Published: 17 November 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return