AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Expression and regulation of genes involved in the reserve starch biosynthesis pathway in hexaploid wheat (Triticum aestivum L.)

Yunsong Gu1Shichen Han1Lin Chen1Junyi MuLuning DuanYaxuan LiYueming YanXiaohui Li( )
Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China

1 The authors contributed equally to this work.

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Reserve starch of cereal crop accounts for about 70% of grain endosperm and acts as an important human carbohydrate resource worldwide. Wheat reserve starch is synthesized by enzymatic machinery in endosperm cells. To identify genes involved in starch biosynthesis, we constructed 30 RNA-Seq libraries of 10 endosperm-development periods and performed expression and localization analyses. Of 166 endosperm-expressed homologs of starch biosynthesis-related genes, 74 showed expression correlated with reserve starch accumulation, including 26 with expected subcellular distribution and higher expression than their isoforms. The key proteins SUS3, UGP1, cAGPase, and Bt1-3 formed the main metabolic pathway and contributed the major substrates for starch processing in amyloplasts. Important isoforms, key pathway proteins, and the main carbon flux toward starch formation in the reserve starch biosynthesis pathway were identified. Based on a co-expression analysis, a library of 425 transcription factors was produced to screen for common regulators. TaMYB44 had features of transcription factors and bound to TaSUT1, TaSSIIIa, TaBEIIa, TaISA1, and TaBEIIb promoters in yeast, suggesting that the gene is a pathway regulator. This study sheds light on understanding the mechanism of reserve starch biosynthesis and will be helpful for increasing starch content in wheat endosperm via biotechnological strategies.

References

[1]

R. Brenchley, M. Spannagl, M. Pfeifer, G.L.A. Barker, R. D’Amore, A.M. Allen, N. McKenzie, M. Kramer, A. Kerhornou, D. Bolser, S. Kay, D. Waite, M. Trick, I. Bancroft, Y. Gu, N.X. Huo, M.C. Luo, S. Sehgal, B. Gill, S. Kianian, O. Anderson, P. Kersey, J. Dvorak, W.R. McCombie, A. Hall, K.F.X. Mayer, K.J. Edwards, M.W. Bevan, N. Hall, Analysis of the bread wheat genome using whole-genome shotgun sequencing, Nature 491 (2012) 705–710.

[2]

S. Barak, D. Mudgil, B.S. Khatkar, Biochemical and functional properties of wheat gliadins: a review, Crit. Rev. Food Sci. 55 (2015) 357–368.

[3]

H. Cao, X. Yan, G. Chen, J. Zhou, X. Li, W. Ma, Y. Yan, Comparative proteome analysis of A- and B-type starch granule-associated proteins in bread wheat (Triticum aestivum L.) and Aegilops crassa, J. Proteome 112 (2015) 95–112.

[4]

H. Brust, S. Orzechowski, J. Fettke, M. Steup, Starch synthesizing reactions and paths: in vitro and in vivo studies, J. Appl. Glycosci. 60 (2013) 3–20.

[5]
Y. Nakamura, Biosynthesis of reserve starch, in: Y. Nakamura (Ed.), Starch, Springer, Tokyo, Japan 2015, pp. 161–209.
[6]

B. Pfister, S.C. Zeeman, Formation of starch in plant cells, Cell. Mol. Life Sci. 73 (2016) 2781–2807.

[7]

A. Goren, D. Ashlock, I.J. Tetlow, Starch formation inside plastids of higher plants, Protoplasma 255 (2018) 1855–1876.

[8]

Y. Wang, J. Hou, H. Liu, T. Li, K. Wang, C. Hao, H. Liu, X. Zhang, TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement, J. Exp. Bot. 70 (2019) 1497–1511.

[9]

A. Regina, A. Bird, D. Topping, S. Bowden, J. Freeman, T. Barsby, B. Kosar-Hashemi, Z. Li, S. Rahman, M. Morell, High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 3546–3551.

[10]

B. Hazard, X. Zhang, P. Colasuonno, C. Uauy, D.M. Beckles, J. Dubcovsky, Induced mutations in the Starch Branching Enzyme Ⅱ (SBEII) genes increase amylose and resistant starch content in durum wheat, Crop Sci. 52 (2012) 1754–1766.

[11]

B. Hazard, X. Zhang, M. Naemeh, J. Dubcovsky, Registration of durum wheat germplasm lines with combined mutations in SBEII genes conferring increased amylose and resistant starch, J. Plant Regist. 8 (2014) 334–338.

[12]

A. Schönhofen, B. Hazard, X. Zhang, J. Dubcovsky, Registration of common wheat germplasm with mutations in SBEII genes conferring increased grain amylose and resistant starch content, J. Plant Reg. 10 (2016) 200–205.

[13]

I.J. Tetlow, R. Wait, Z. Lu, R. Akkasaeng, C.G. Bowsher, S. Esposito, B. Kosar-Hashemi, M.K. Morell, M.J. Emes, Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein–protein interactions, Plant Cell 16 (2004) 694–708.

[14]

G. Kang, G. Liu, X. Peng, L. Wei, C. Wang, Y. Zhu, Y. Ma, Y. Jiang, T. Guo, Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene, Plant Physiol. Biochem. 73 (2013) 93–98.

[15]

H. Guo, Z. Yan, X. Li, Y. Xie, H. Xiong, Y. Liu, L. Zhao, J. Gu, S. Zhao, L. Liu, Development of a high-efficient mutation resource with phenotypic variation in hexaploid winter wheat and identification of novel alleles in the TaAGP.L-B1 gene, Front. Plant Sci. 8 (2017) 1404.

[16]

Y. Yang, T. Gao, M. Xu, J. Dong, H. Li, P. Wang, G. Li, T. Guo, G. Kang, Y. Wang, Functional analysis of a wheat AGPase plastidial small subunit with a truncated transit peptide, Molecules 22 (2017) 386.

[17]

S. Zhang, H. Guo, A. Irshad, Y. Xie, L. Zhao, H. Xiong, J. Gu, S. Zhao, Y. Ding, L. Liu, The synergistic effects of TaAGP.L-B1 and TaSSIVb-D mutations in wheat lead to alterations of gene expression patterns and starch content in grain development, PLoS One 14 (2019), e0223783,.

[18]

T. Nakamura, M. Yamamori, H. Hirano, S. Hidaka, T. Nagamine, Production of waxy (amylose-free) wheats, Mol. Gen. Genet. 248 (1995) 253–259.

[19]

E. Botticella, F. Sestili, F. Sparla, S. Moscatello, L. Marri, J.A. Cuesta-Seijo, G. Falini, A. Battistelli, P. Trost, D. Lafiandra, Combining mutations at genes encoding key enzymes involved in starch synthesis affects the amylose content, carbohydrate allocation and hardness in the wheat grain, Plant Biotechnol. J. 16 (2018) 1723–1734.

[20]

S.J. McMaugh, J.L. Thistleton, E. Anschaw, J. Luo, C. Konik-Rose, H. Wang, M. Huang, O. Larroque, A. Regina, S.A. Jobling, M.K. Morell, Z. Li, Suppression of starch synthase I expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm, J. Exp. Bot. 65 (2014) 2189–2201.

[21]

M. Yamamori, S. Fujita, K. Hayakawa, J. Matsuki, T. Yasui, Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose, Theor. Appl. Genet. 101 (2000) 21–29.

[22]

C. Konik-Rose, J. Thistleton, H. Chanvrier, I. Tan, P. Halley, M. Gidley, B. Kosar-Hashemi, H. Wang, O. Larroque, J. Ikea, S. McMaugh, A. Regina, S. Rahman, M. Morell, Z. Li, Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat, Theor. Appl. Genet. 115 (2007) 1053–1065.

[23]

J. Luo, R. Ahmed, B. Kosar-Hashemi, O. Larroque, V.M. Butardo, G.J. Tanner, A. Millar, The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma, Theor. Appl. Genet. 128 (2015) 1407–1419.

[24]

H. Guo, Y. Liu, X. Li, Z. Yan, Y. Xie, H. Xiong, L. Zhao, J. Gu, S. Zhao, L. Liu, Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat, BMC Genomics 18 (2017) 358.

[25]

D. Seung, S. Soyk, M. Coiro, B.A. Maier, S. Eicke, S.C. Zeeman, Protein targeting to starch is required for localising granulebound starch synthase to starch granules and for normal amylose synthesis in Arabidopsis, PLoS Biol. 13 (2015), e1002080,.

[26]

D. Seung, J. Boudet, J. Monroe, T.B. Schreier, L.C. David, M. Abt, K. Lu, M. Zanella, S.C. Zeeman, Homologs of PROTEIN TARGETING TO STARCH control starch granule initiation in Arabidopsis leaves, Plant Cell 29 (2017) 1657–1677.

[27]

Y. Zhong, A. Blennow, O. Kofoed-Enevoldsen, D. Jiang, K.H. Hebelstrup, Protein targeting to starch 1 is essential for starchy endosperm development in barley, J. Exp. Bot. 70 (2019) 485–496.

[28]

T. Chia, N.M. Adamski, B. Saccomanno, A. Greenland, A. Nash, C. Uauy, K. Trafford, Transfer of a starch phenotype from wild wheat to bread wheat by deletion of a locus controlling B-type starch granule content, J. Exp. Bot. 68 (2017) 5497–5509.

[29]

T. Chia, M. Chirico, R. King, R. Ramirez-Gonzalez, B. Saccomanno, D. Seung, J. Simmonds, M. Trick, C. Uauy, T. Verhoeven, K. Trafford, A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyploid wheat, J. Exp. Bot. 71 (2020) 105–115.

[30]

Y. Zhu, X. Cai, Z. Wang, M. Hong, An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice wax gene, J. Biol. Chem. 278 (2003) 47803–47811.

[31]

F. Fu, H. Xue, Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator, Plant Physiol. 154 (2010) 927–938.

[32]

J.C. Wang, H. Xu, Y. Zhu, Q.Q. Liu, X.L. Cai, OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm, J. Exp. Bot. 64 (2013) 3453–3466.

[33]

J. Chen, Q. Yi, Y. Cao, B. Wei, L. Zheng, Q. Xiao, Y. Xie, Y. Gu, Y. Li, H. Huang, Y. Wang, X. Hou, T. Long, J. Zhang, H. Liu, Y. Liu, G. Yu, Y. Huang, ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters, J. Exp. Bot. 67 (2016) 1327–1338.

[34]

Z. Zhang, X. Zheng, J. Yang, J. Messing, R. Wu, Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 10842–10847.

[35]

X. Qi, S. Li, Y. Zhu, Q. Zhao, D. Zhu, J. Yu, ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm, Plant Mol. Biol. 93 (2017) 7–20.

[36]

H. Huang, S. Xie, Q. Xiao, B. Wei, L. Zheng, Y. Wang, Y. Cao, X. Zhang, T. Long, Y. Li, Y. Hu, G. Yu, H. Liu, Y. Liu, Z. Huang, J. Zhang, Y. Huang, Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156, Sci. Rep. 6 (2016) 27590.

[37]

Q. Xiao, Y. Wang, J. Du, H. Li, B. Wei, Y. Wang, Y. Li, G. Yu, H. Liu, J. Zhang, Y. Liu, Y. Hu, Y. Huang, ZmMYB14 is an important transcription factor involved in the regulation of the activity of the ZmBT1 promoter in starch biosynthesis in maize, FEBS J. 284 (2017) 3079–3099.

[38]

J. Zhang, J. Chen, Q. Yi, Y. Hu, H. Liu, Y. Liu, Y. Huang, Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm, Plant Mol. Biol. 84 (2014) 359–369.

[39]

X. Peng, Q. Wang, Y. Wang, B. Cheng, Y. Zhao, S. Zhu, A maize NAC transcription factor, ZmNAC34, negatively regulates starch synthesis in rice, Plant Cell Rep. 38 (2019) 1473.

[40]

Z. Zhang, J. Dong, C. Ji, Y. Wu, J. Messing, NAC-type transcription factors regulate accumulation of starch and protein in maize seeds, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 11223–11228.

[41]

S. Persson, H. Wei, J. Milne, G.P. Page, C.R. Somerville, Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 8633–8638.

[42]

M.Y. Hirai, K. Sugiyama, Y. Sawada, Takayuki Tohge, Takeshi Obayashi, Akane Suzuki, Ryoichi Araki, Nozomu Sakurai, Hideyuki Suzuki, Koh Aoki, Hideki Goda, Osamu Ishizaki Nishizawa, Daisuke Shibata, Kazuki Saito, Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 6478–6483.

[43]

A. Singh, P. Kumar, M. Sharma, R. Tuli, H.S. Dhaliwal, A. Chaudhury, D. Pal, J. Roy, Expression patterns of genes involved in starch biosynthesis during seed development in bread wheat (Triticum aestivum), Mol. Breed. 35 (2015) 184.

[44]

IWGSC, Shifting the limits in wheat research and breeding using a fully annotated reference genome, Science 361 (2018) eaar7191.

[45]

X. Li, K. Wang, S. Wang, L. Gao, X. Xie, S.L.K. Hsam, F.J. Zeller, Y. Yan, Molecular characterization and comparative transcriptional analysis of LMW-m-type genes from wheat (Triticum aestivum L.) and Aegilops species, Theor. Appl. Genet. 121 (2010) 845–856.

[46]

W. Crismani, U. Baumann, T. Sutton, N. Shirley, T. Webster, G. Spangenberg, P. Langridge, J.A. Able, Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat, BMC Genomics 7 (2006) 267.

[47]

J. Mu, L. Chen, Y. Gu, L. Duan, S. Han, Y. Li, Y. Yan, X. Li, Genome-wide identification of internal reference genes for normalization of gene expression values during endosperm development in wheat, J. Appl. Genet. 60 (2019) 233–241.

[48]

D. Kim, B. Langmead, S.L. Salzberg, HISAT: a fast spliced aligner with low memory requirements, Nat. Methods 12 (2015) 357–360.

[49]

S. Anders, P.T. Pyl, W. Huber, HTSeq––a Python framework to work with high-throughput sequencing data, Bioinformatics 31 (2015) 166–169.

[50]

Y. Zheng, C. Jiao, H. Sun, H.G. Rosli, M.A. Pombo, P. Zhang, M. Banf, X. Dai, G.B. Martin, J.J. Giovannoni, P.X. Zhao, S.Y. Rhee, Z. Fei, iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases, Mol. Plant 9 (2016) 1667–1670.

[51]

S. Mukherjee, A. Liu, K.K. Deol, K. Kulichikhin, C. Stasolla, A. Brûlé-Babel, B.T. Ayele, Transcriptional coordination and abscisic acid mediated regulation of sucrose transport and sucrose-to-starch metabolism related genes during grain filling in wheat (Triticum aestivum L.), Plant Sci. 240 (2015) 143–160.

[52]

J.D. Thompson, D.G. Higgins, T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994) 4673–4680.

[53]

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28 (2011) 2731–2739.

[54]

S.D. Yoo, Y.H. Cho, J. Sheen, Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis, Nat. Protoc. 2 (2007) 1565–1572.

[55]

Y. Bai, N. Han, J. Wu, Y. Yang, J. Wang, M. Zhu, H. Bian, A transient gene expression system using barley protoplasts to evaluate microRNAs for post-transcriptional regulation of their target genes, Plant Cell Tiss. Org. 119 (2014) 211–219.

[56]

M.J.L. de Hoon, S. Imoto, J. Nolan, S. Miyano, Open source clustering software, Bioinformatics 20 (2004) 1453–1454.

[57]

R.D. Page, TreeView: an application to display phylogenetic trees on personal computers, Comput. Appl. Biosci. 12 (1996) 357–358.

[58]

S. Murayama, H. Handa, Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids, Planta 225 (2007) 1193–1203.

[59]

W.A. Vargas, G.L. Salerno, The Cinderella story of sucrose hydrolysis: alkaline/neutral invertases, from cyanobacteria to unforeseen roles in plant cytosol and organelles, Plant Sci. 178 (2010) 1–8.

[60]

W. Cheng, H. Zhang, X. Zhou, H. Liu, Y. Liu, J. Li, S. Han, Y. Wang, Subcellular localization of rice hexokinase in the mesophyll protoplasts of tobacco, Biol. Plant. 55 (2011) 173–177.

[61]

W. Long, B. Dong, Y. Wang, P. Pan, Y. Wang, L. Liu, X. Chen, X. Liu, S. Liu, Y. Tian, L. Chen, J. Wan, FLOURY ENDOSPERM8, encoding the UDP-glucose pyrophosphorylase 1, affects the synthesis and structure of starch in rice endosperm, J. Plant Biol. 60 (2017) 513–522.

[62]

H. Jiang, W. Dian, F. Liu, P. Wu, Isolation and characterization of two fructokinase cDNA clones from rice, Phytochemistry 62 (2003) 47–52.

[63]

A. Tuncel, J. Kawaguchi, Y. Ihara, H. Matsusaka, A. Nishi, T. Nakamura, S. Kuhara, H. Hirakawa, Y. Nakamura, B. Cakir, A. Nagamine, T. Okita, S. Hwang, H. Satoh, The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme, Plant Cell Physiol. 55 (2014) 1169–1183.

[64]

R.A. Burton, P.E. Johnson, D.M. Beckles, G.B. Fincher, H.L. Jenner, M.J. Naldrett, K. Denyer, Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm, Plant Physiol. 130 (2002) 1464–1475.

[65]

T. Chia, D. Thorneycroft, A. Chapple, G. Messerli, J. Chen, S.C. Zeeman, S.M. Smith, A.M. Smith, A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night, Plant J. 37 (2004) 853–863.

[66]

Y. Lu, J.M. Steichen, S.E. Weise, T.D. Sharkey, Cellular and organ level localization of maltose in maltose-excess Arabidopsis mutants, Planta 224 (2006) 935–943.

[67]
M. Steup, Starch degrading enzymes, in: P.J. Lea (Ed.), Methods in Plant Biochemistry, Academic Press, London, UK 1990, pp. 103–128.
[68]

S. Hwang, K. Koper, H. Satoh, T.W. Okita, Rice endosperm starch phosphorylase (Pho1) assembles with disproportionating enzyme (Dpe1) to form a protein complex that enhances synthesis of malto-oligosaccharides, J. Biol. Chem. 291 (2016) 19994–20007.

[69]

P.L. Vrinten, T. Nakamura, Wheat granule-bound starch synthase Ⅰ and Ⅱ are encoded by separate genes that are expressed in different tissues, Plant Physiol. 122 (2000) 255–263.

[70]

W. Dian, H. Jiang, Q. Chen, F. Liu, P. Wu, Cloning and characterization of the granule-bound starch synthase II gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm, Planta 218 (2003) 261.

[71]

T. Umemoto, M. Yano, H. Satoh, A. Shomura, Y. Nakamura, Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties, Theor. Appl. Genet. 104 (2002) 1–8.

[72]

Y. Takemoto-kuno, K. Suzuki, S. Nakamura, H. Satoh, K. Ohtsubo, Soluble starch synthase I effects differences in amylopectin structure between indica and japonica rice varieties, J. Agric. Food Chem. 54 (2006) 9234–9240.

[73]

G. Kang, W. Xu, G. Liu, X. Peng, T. Guo, Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum) endosperm, Genome 56 (2013) 115–122.

[74]

C. Peng, Y. Wang, F. Liu, Y. Ren, K. Zhou, J. Lyu, M. Zheng, S. Zhao, L. Zhang, C. Wang, L. Jiang, X. Zhang, X. Guo, Y. Bao, J. Wan, FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm, Plant J. 77 (2014) 917–930.

[75]

D. Albani, M.C.U. Hammond-Kosack, C. Smith, S. Conlan, V. Colot, M. Holdsworth, M.W. Bevan, The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes, Plant Cell 9 (1997) 171–184.

[76]

W. Guo, H. Yang, Y. Liu, Y. Gao, Z. Ni, H. Peng, M. Xin, Z. Hu, Q. Sun, Y. Yao, The wheat transcription factor TaGAMyb recruits histone acetyltransferase and activates the expression of a high-molecular-weight glutenin subunit gene, Plant J. 84 (2015) 347–359.

The Crop Journal
Pages 440-455
Cite this article:
Gu Y, Han S, Chen L, et al. Expression and regulation of genes involved in the reserve starch biosynthesis pathway in hexaploid wheat (Triticum aestivum L.). The Crop Journal, 2021, 9(2): 440-455. https://doi.org/10.1016/j.cj.2020.08.002

273

Views

22

Downloads

27

Crossref

N/A

Web of Science

24

Scopus

1

CSCD

Altmetrics

Received: 30 December 2019
Revised: 08 June 2020
Accepted: 09 September 2020
Published: 21 September 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return