AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Identification of QTL and candidate genes involved in early seedling growth in rice via high-density genetic mapping and RNA-seq

Jing YangaZhenhua Guoa,bLixin LuoaQiaoli GaoaWuming XiaoaJiafeng WangaHui WangaZhiqiang Chena( )Tao Guoa( )
National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China
Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, Heilongjiang, China
Show Author Information

Abstract

Early seedling vigor (ESV) is a major breeding target in rice, especially under direct seeding. To identify quantitative trait locus (QTL) affecting ESV, a recombinant inbred line population derived from a cross between 02428 and YZX, two cultivars differing in vigor during early seedling growth, was used for QTL analysis. Nine traits associated with ESV were examined using a high-density map. Of 16 additive loci identified, three were detected in two generations and thus considered stable. Four epistatic interactions were detected, one of which was repeated in two generations. Further analysis of the pyramiding effect of the three stable QTL showed that the phenotypic value could be effectively improved with an increasing number of QTL. These results were combined with results from our previous QTL analysis of the germination index. The lines G58 and G182 combined all the favourable alleles of all three stable QTL for ESV and three QTL for germination speed. These two lines showed rapid germination and strong ESV. A total of 37 candidate differentially expressed genes were obtained from the regions of the three stable QTL by analysis of the dynamic transcriptomic expression profile during the seedling growth period of the two parents. The QTL are targets for ESV breeding and the candidate genes await functional validation. This study provides a theoretical basis and a genetic resource for the breeding of direct-seeded rice.

References

[1]

B.L. Gross, Z. Zhao, Archaeological and genetic insights into the origins of domesticated rice, Proc. Natl. Acad. Sci. U. S. A 111 (17) (2014) 6190–6197, https://doi.org/10.1073/pnas.1308942110.

[2]

Z. Wang, J. Wang, Y. Bao, Y. Wu, H. Zhang, Quantitative trait loci controlling rice seed germination under salt stress, Euphytica 178 (3) (2011) 297–307, https://doi.org/10.1007/s10681-010-0287-8.

[3]

A. Mahender, A. Anandan, S.K. Pradhan, Early seedling vigour, an imperative trait for direct-seeded rice: an overview on physio-morphological parameters and molecular markers, Planta 241 (2015) 1027–1050.

[4]

A.M. Ismail, E.S. Ella, G.V. Vergara, D.J. Mackill, Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa L.), Ann. Bot. 103 (2008) 197–209.

[5]

A.N. Rao, D.E. Johnson, B. Sivaprasad, J.K. Ladha, A.M. Mortimer, Weed management in direct-seeded rice, Adv. Agron. 93 (2007) 155–255.

[6]

Y. Singh, V.P. Singh, G. Singh, D.S. Yadav, R.K.P. Sinha, D.E. Johnson, A.M. Mortimer, The implications of land preparation, crop establishment method and weed management on rice yield variation in the rice–wheat system in the Indo-Gangetic plains, Field Crops Res. 121 (1) (2011) 64–74, https://doi.org/10.1016/j.fcr.2010.11.012.

[7]

K. Jabran, B.S. Chauhan, Weed management in aerobic rice systems, Crop Prot. 78 (2015) 151–163, https://doi.org/10.1016/j.cropro.2015.09.005.

[8]

D.L. Zhao, G.N. Atlin, L. Bastiaans, J.H.J. Spiertz, Comparing rice germplasm groups for growth, grain yield and weed-suppressive ability under aerobic soil conditions, Weed Res. 46 (6) (2006) 444–452, https://doi.org/10.1111/j.1365-3180.2006.00529.x.

[9]

M.R. Foolad, P. Subbiah, L.P. Zhang, Common QTL affect the rate of tomato seed germination under different stress and nonstress conditions, Int. J. Plant Genomics 2007 (2007) 97386.

[10]

D.B. Egli, M. Rucker, Seed vigor and the uniformity of emergence of corn seedlings, Crop Sci. 52 (6) (2012) 2774–2782, https://doi.org/10.2135/cropsci2012.01.0064.

[11]

U.M. Singh, S. Yadav, S. Dixit, P.J. Ramayya, M.N. Devi, K.A. Raman, A. Kumar, QTL hotspots for early vigor and related traits under dry direct-seeded system in rice (Oryza sativa L.), Front. Plant Sci. 8 (2017) 286.

[12]

Z.H. Zhang, X.S. Qu, S. Wan, L.H. Chen, Y.G. Zhu, Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (Oryza sativa), Ann. Bot. 95 (2005) 423–429.

[13]

L. Zhou, J.K. Wang, Q. Yi, Y.Z. Wang, Y.G. Zhu, Z.H. Zhang, Quantitative trait loci for seedling vigor in rice under field conditions, Field Crops Res. 100 (2–3) (2007) 294–301, https://doi.org/10.1016/j.fcr.2006.08.003.

[14]

X.L. Lu, A.L. Niu, H.Y. Cai, Y. Zhao, J.W. Liu, Y.G. Zhu, Z.H. Zhang, Genetic dissection of seedling and early vigor in a recombinant inbred line population of rice, Plant Sci. 172 (2) (2007) 212–220, https://doi.org/10.1016/j.plantsci.2006.08.012.

[15]

A. Abe, H. Takagi, T. Fujibe, K. Aya, M. Kojima, H. Sakakibara, A. Uemura, M. Matsuoka, R. Terauchi, OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice, Theor. Appl. Genet. 125 (4) (2012) 647–657, https://doi.org/10.1007/s00122-012-1857-z.

[16]

K. Yano, T. Takashi, S. Nagamatsu, M. Kojima, H. Sakakibara, H. Kitano, M. Matsuoka, K. Aya, Efficacy of microarray profiling data combined with QTL mapping for the identification of a QTL gene controlling the initial growth rate in rice, Plant Cell Physiol. 53 (2012) 729–739.

[17]

L. Xie, Z. Tan, Y. Zhou, R. Xu, L. Feng, Y. Xing, X. Qi, Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice: QTLs for rice seed vigor, J. Integr. Plant Biol. 56 (8) (2014) 749–759, https://doi.org/10.1111/jipb.12190.

[18]

A. Zhang, C.L. Liu, G. Chen, K. Hong, Y. Gao, P. Tian, Y.L. Peng, B. Zhang, B.P. Ruan, H.Z. Jiang, L.B. Guo, Q. Qian, Z.Y. Gao, Genetic analysis for rice seedling vigor and fine mapping of a major QTL qSSL1b for seedling shoot length, Breed. Sci. 67 (2017) 307–315.

[19]

Y. Zhao, C.H. Jiang, R.M.A. Rehman, H.L. Zhang, J. Li, Z.C. Li, Genetic analysis of roots and shoots in rice seedling by association mapping, Genes Genomics 41 (1) (2019) 95–105, https://doi.org/10.1007/s13258-018-0741-x.

[20]

Y. He, J. Cheng, Y. He, B. Yang, Y. Cheng, C. Yang, H. Zhang, Z. Wang, Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice, Plant Biotechnol. J. 17 (2) (2019) 322–337, https://doi.org/10.1111/pbi.12979.

[21]

X. Wang, B.H. Zou, Q.L. Shao, Y.M. Cui, S. Lu, Y. Zhang, Q.S. Huang, J. Huang, J. Hua, Natural variation reveals that OsSAP16 controls low-temperature germination in rice, J. Exp. Bot. 69 (2018) 413–421.

[22]

X. Liu, H. Zhang, H. Li, N. Li, Y. Zhang, Q. Zhang, S. Wang, Q. Wang, H. Wang, Fine-mapping quantitative trait loci for body weight and abdominal fat traits: effects of marker density and sample size, Poult. Sci. 87 (2008) 1314–1319.

[23]

L.K. Chen, W.W. Gao, S.P. Chen, L.P. Wang, J.Y. Zou, Y.Z. Liu, H. Wang, Z.Q. Chen, T. Guo, High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness-associated differentially expressed candidate genes in rice, Rice 9 (2016) 48.

[24]

J. Yang, K. Sun, D. Li, L. Luo, Y. Liu, M. Huang, G. Yang, H. Liu, H. Wang, Z. Chen, T. Guo, Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice via high-density genetic mapping and RNA-Seq, BMC Genomics 20 (2019) 355.

[25]

L. Meng, H. Li, L. Zhang, J. Wang, QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations, Crop J. 3 (2015) 269–283.

[26]

H. Li, G. Ye, J. Wang, A Modified algorithm for the improvement of composite interval mapping, Genetics 175 (1) (2007) 361–374, https://doi.org/10.1534/genetics.106.066811.

[27]

H. Li, J.-M. Ribaut, Z. Li, J. Wang, Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations, Theor. Appl. Genet. 116 (2) (2008) 243–260, https://doi.org/10.1007/s00122-007-0663-5.

[28]

T. Guo, J. Yang, D. Li, K. Sun, L. Luo, W. Xiao, J. Wang, Y. Liu, S. Wang, H. Wang, Z. Chen, Integrating GWAS, QTL, mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza sativa L.), Mol. Breed. 39 (2019) 87.

[29]

E.D. Redoña, D.J. Mackill, Mapping quantitative trait loci for seeding vigor in rice using RFLPs, Theor. Appl. Genet. 92 (1996) 395–402.

[30]

B. Courtois, L. Shen, W. Petalcorin, S. Carandang, R. Mauleon, Z. Li, Locating QTLs controlling constitutive root traits in the rice population IAC 165 × Co39, Euphytica 134 (3) (2003) 335–345, https://doi.org/10.1023/B:EUPH.0000004987.88718.d6.

[31]

H. Ikeda, A. Kamoshita, T. Manabe, Genetic analysis of rooting ability of transplanted rice (Oryza sativa L.) under different water conditions, J. Exp. Bot. 58 (2006) 309–318.

[32]

B.S. Chauhan, Strategies to manage weedy rice in Asia, Crop Prot. 48 (2013) 51–56, https://doi.org/10.1016/j.cropro.2013.02.015.

[33]

V. Kumar, J.K. Ladha, Direct seeding of rice: recent developments and future research needs, Adv. Agron. 111 (2011) 297–413.

[34]

X.F. Bai, L.J. Luo, W.H. Yan, M.R. Kovi, W. Zhan, Y.Z. Xing, Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7, BMC Genet. 11 (2010) 16.

[35]

W. Chen, H. Chen, T. Zheng, R. Yu, W.B. Terzaghi, Z. Li, X.W. Deng, J. Xu, H. He, Highly efficient genotyping of rice biparental populations by GoldenGate assays based on parental resequencing, Theor. Appl. Genet. 127 (2) (2014) 297–307, https://doi.org/10.1007/s00122-013-2218-2.

[36]

H.H. Yu, W.B. Xie, J. Wang, Y.Z. Xing, C.G. Xu, X.H. Li, J.H. Xiao, Q.F. Zhang, Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers, PLoS ONE 6 (2011) e17595.

[37]

R. Deshmukh, A. Singh, N. Jain, S. Anand, R. Gacche, A. Singh, K. Gaikwad, T. Sharma, T. Mohapatra, N. Singh, Identification of candidate genes for grain number in rice (Oryza sativa L.), Funct. Integr. Genomics 10 (3) (2010) 339–347, https://doi.org/10.1007/s10142-010-0167-2.

[38]

A. Pandit, V. Rai, S. Bal, S. Sinha, V. Kumar, M. Chauhan, R.K. Gautam, R. Singh, P.C. Sharma, A.K. Singh, K. Gaikwad, T.R. Sharma, T. Mohapatra, N.K. Singh, Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.), Mol. Genet. Genomics 284 (2) (2010) 121–136, https://doi.org/10.1007/s00438-010-0551-6.

[39]

D.X. Liu, J. Zhang, X.Y. Liu, W.W. Wang, D.J. Liu, Z.H. Teng, X.M. Fang, Z.Y. Tan, S.Y. Tang, J.H. Yang, J.W. Zhong, Z.S. Zhang, Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T1 region in upland cotton, BMC Genomics 17 (2016) 295.

[40]

S.S. Wang, M. Cao, X. Ma, W.K. Chen, J. Zhao, C.Q. Sun, L.B. Tan, F.X. Liu, Integrated RNA sequencing and QTL mapping to identify candidate genes from Oryza rufipogon associated with salt tolerance at the seedling stage, Front. Plant Sci. 8 (2017) 1427.

[41]

B.D. Kohorn, S.L. Kohorn, The cell wall-associated kinases, WAKs, as pectin receptors, Front. Plant Sci. 3 (2012) 88.

[42]

Y. Zhao, S.K. Christensen, C. Fankhauser, J.R. Cashman, J.D. Cohen, D. Weigel, J. Chory, A role for flavin monooxygenase-like enzymes in auxin biosynthesis, Science 291 (2001) 306–309.

[43]

L. Wang, W. Xie, Y. Chen, W. Tang, J. Yang, R. Ye, Q. Zhang, A dynamic gene expression atlas covering the entire life cycle of rice, Plant J. 61 (2010) 752–766.

[44]

B.C.Y. Collard, D.J. Mackill, Marker-assisted selection: an approach for precision plant breeding in the twenty-first century, Phil. Trans. R. Soc. B. 363 (1491) (2008) 557–572, https://doi.org/10.1098/rstb.2007.2170.

[45]

B.P.M. Swamy, H.U. Ahmed, A. Henry, R. Mauleon, S. Dixit, P. Vikram, R. Tilatto, S.B. Verulkar, P. Perraju, N.P. Mandal, M. Variar, S. Robin, R. Chandrababu, O.N. Singh, J. L. Dwivedi, S.P. Das, K.K. Mishra, R.B. Yadaw, T. L. Aditya, B. Karmakar, K. Satoh, A. Moumeni, S. Kikuchi, H. Leung, A. Kumar, Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought, PLoS One 8 (2013) e62795.

[46]

G. Zong, A. Wang, L.u. Wang, G. Liang, M. Gu, T. Sang, B. Han, A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.), J. Genet. Genomics 39 (7) (2012) 335–350, https://doi.org/10.1016/j.jgg.2012.06.004.

[47]

T.F. Yang, S.H. Zhang, J.L. Zhao, Q. Liu, Z.H. Huang, X.X. Mao, J.F. Dong, X.F. Wang, G.Q. Zhang, B. Liu, Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice (Oryza sativa L.), Mol. Breed. 36 (2016) 96.

[48]

L.Y. Li, H.P. Chen, D.H. Mao, Pyramiding of rapid germination loci from Oryza Sativa cultivar ‘Xieqingzao B’ and cold tolerance loci from Dongxiang wild rice to increase climate resilience of cultivated rice, Mol. Breed. 39 (2019) 85.

The Crop Journal
Pages 360-371
Cite this article:
Yang J, Guo Z, Luo L, et al. Identification of QTL and candidate genes involved in early seedling growth in rice via high-density genetic mapping and RNA-seq. The Crop Journal, 2021, 9(2): 360-371. https://doi.org/10.1016/j.cj.2020.08.010

277

Views

3

Downloads

20

Crossref

N/A

Web of Science

22

Scopus

6

CSCD

Altmetrics

Received: 13 November 2019
Revised: 22 May 2020
Accepted: 10 September 2020
Published: 17 November 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return