AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Genome-wide alternative splicing variation and its potential contribution to maize immature-ear heterosis

Xiaojiao HuHongwu WangKun LiXiaogang LiuZhifang LiuYujin WuShuqiang LiChangling Huang( )
National Engineer Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Show Author Information

Abstract

Heterosis is a well-known phenomenon widely applied in agriculture. Recent studies have suggested that differential gene and protein expression between hybrids and their parents play important roles in heterosis. Alternative splicing (AS) is an essential posttranscriptional mechanism that can greatly affect the transcriptome and proteome diversity in plants. However, genome-wide AS divergence in hybrids compared to their parents and its potential contribution to heterosis have not been comprehensively investigated. We report the direct profiling of the AS landscape using RNA sequencing data from immature ears of the maize hybrid ZD808 and its parents NG5 and CL11. Our results revealed a large number of significant differential AS (DAS) events in ZD808 relative to its parents, which can be further classified into parental-dominant and novel DAS patterns. Parental-dominant, especially NG5-dominant, events were prevalent in the hybrid, accounting for 42% of all analyzed DAS events. Functional enrichment analysis revealed that the NG5-dominant AS events were involved mainly in regulating the expression of genes associated with carbon/nitrogen metabolism and cell division processes and contributed greatly to maize ear heterosis. Among ZD808, CL11, and NG5, 32.5% of DAS contained or lacked binding sites of at least one annotated maize microRNA (miRNA) and may be involved in miRNA-mediated posttranscriptional regulation. Cis regulation was the predominant contributor to AS variation and participates in many important biological processes associated with immature ear development. This study provides a comprehensive view of genome-wide alternative splicing variation in a maize hybrid.

References

[1]

E.T. Wang, R. Sandberg, S. Luo, I. Khrebtukova, L.u. Zhang, C. Mayr, S.F. Kingsmore, G.P. Schroth, C.B. Burge, Alternative isoform regulation in human tissue transcriptomes, Nature 456 (2008) 470–476.

[2]

Y. Marquez, J.W.S. Brown, C. Simpson, A. Barta, M. Kalyna, Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis, Genome Res. 22 (2012) 1184–1195.

[3]

X. Lu, D. Chen, D. Shu, Z. Zhang, W. Wang, C. Klukas, L. ling Chen, Y. Fan, M. Chen, C. Zhang, The differential transcription network between embryo and endosperm in the early developing maize seed, Plant Physiol. 162 (2013) 440–455.

[4]

T. Lu, G. Lu, D. Fan, C. Zhu, W. Li, Q. Zhao, Q. Feng, Y. Zhao, Y. Guo, W. Li, X. Huang, B. Han, Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq, Genome Res. 20 (2010) 1238–1249.

[5]

Q. Chen, Y. Han, H. Liu, X. Wang, J. Sun, B. Zhao, W. Li, J. Tian, Y. Liang, J. Yan, X. Yang, F. Tian, Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize, Plant Cell 30 (2018) 1404–1423.

[6]

M. Kalyna, C.G. Simpson, N.H. Syed, D. Lewandowska, Y. Marquez, B. Kusenda, J. Marshall, J. Fuller, L. Cardle, J. McNicol, H.Q. Dinh, A. Barta, J.W.S. Brown, Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis, Nucleic Acids Res. 40 (2012) 2454–2469.

[7]

A.S.N. Reddy, Y. Marquez, M. Kalyna, A. Barta, Complexity of the alternative splicing landscape in plants, Plant Cell 25 (2013) 3657–3683.

[8]

N.H. Syed, M. Kalyna, Y. Marquez, A. Barta, J.W.S. Brown, Alternative splicing in plants – coming of age, Trends Plant Sci. 17 (2012) 616–623.

[9]

Y. Shen, Z. Zhou, Z. Wang, W. Li, C. Fang, M. Wu, Y. Ma, T. Liu, L.A. Kong, D.L. Peng, Z. Tian, Global dissection of alternative splicing in paleopolyploid soybean, Plant Cell 26 (2014) 996–1008.

[10]

A.R. Kornblihtt, I.E. Schor, A. Mariano, D. Gwendal, P. Ezequiel, M.J. Muñoz, Alternative splicing: a pivotal step between eukaryotic transcription and translation, Nat. Rev. Mol. Cell Biol. 14 (2013) 153–165.

[11]

C.J. McManus, J.D. Coolon, J. Eipper-Mains, P.J. Wittkopp, B.R. Graveley, Evolution of splicing regulatory networks in Drosophila, Genome Res. 24 (2014) 786–796.

[12]

Y. Liu, J. He, Z. Chen, X. Ren, X. Hong, Z. Gong, ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis, Plant J. 63 (2010) 749–765.

[13]

I. Keren, L. Tal, C.C. Des Francs-Small, W.L. Araújo, S. Shevtsov, F. Shaya, A.R. Fernie, I. Small, O. Ostersetzer-Biran, nMAT1, a nuclear-encoded maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function, Plant J. 71 (2012) 413–426.

[14]

S. Glanz, J. Jacobs, V. Kock, A. Mishra, U. Kück, Raa4 is a trans-splicing factor that specifically binds chloroplast tscA intron RNA, Plant J. 69 (2012) 421–431.

[15]

D. Staiger, J.W.S. Brown, Alternative splicing at the intersection of biological timing, development, and stress responses, Plant Cell 25 (2013) 3640–3656.

[16]

S. Balasubramanian, S. Sureshkumar, J. Lempe, D. Weigel, Potent induction of Arabidopsis thaliana flowering by elevated growth temperature, PLoS Genet. 2 (2006).

[17]

S. Matsukura, J. Mizoi, T. Yoshida, D. Todaka, Y. Ito, K. Maruyama, K. Shinozaki, K. Yamaguchi-Shinozaki, Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes, Mol. Genet. Genomics 283 (2010) 185–196.

[18]

F. Qin, M. Kakimoto, Y. Sakuma, K. Maruyama, Y. Osakabe, L.S.P. Tran, K. Shinozaki, K. Yamaguchi-Shinozaki, Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L, Plant J. 50 (2007) 54–69.

[19]

F. Lin, Y. Zhang, M.Y. Jiang, Alternative splicing and differential expression of two transcripts of nicotine adenine dinucleotide phosphate oxidase B gene from Zea mays, J. Integr. Plant Biol. 51 (2009) 287–298.

[20]

B.E. Goulet, F. Roda, R. Hopkins, Hybridization in plants: old ideas, new techniques, Plant Physiol. 173 (2017) 65–78.

[21]

Y. Wu, Y. Sun, X. Wang, X. Lin, S. Sun, K. Shen, J. Wang, T. Jiang, S. Zhong, C. Xu, B. Liu, Transcriptome shock in an interspecific F1 triploid hybrid of Oryza revealed by RNA sequencing, J. Integr. Plant Biol. 58 (2016) 150–164.

[22]

R. Zhou, N. Moshgabadi, K.L. Adams, Extensive changes to alternative splicing patterns following allopolyploidy in natural and resynthesized polyploids, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 16122–16127.

[23]

M. Scascitelli, M. Cognet, K.L. Adams, An interspecific plant hybrid shows novel changes in parental splice forms of genes for splicing factors, Genetics 184 (2010) 975–983.

[24]

T. Saminathan, P. Nimmakayala, S. Manohar, S. Malkaram, A. Almeida, R. Cantrell, Y. Tomason, L. Abburi, M.A. Rahman, V.G. Vajja, Differential gene expression and alternative splicing between diploid and tetraploid watermelon, J. Exp. Bot. 66 (2015) 1369.

[25]

F. Hochholdinger, N.B. Larson, C.T. Yeh, P.S. Schnable, A. Paschold, C. Marcon, S. Ossowski, S. Lund, C. Lanz, D. Nettleton, Y. Jia, Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents, Genome Res. 22 (2012) 2445–2454.

[26]

G. He, X. Zhu, A.A. Elling, L. Chen, X. Wang, L. Guo, M. Liang, H. He, H. Zhang, F. Chen, Y. Qi, R. Chen, X.W. Deng, Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids, Plant Cell 22 (2010) 17–33.

[27]

J. Xing, Q. Sun, Z. Ni, Proteomic patterns associated with heterosis, Biochim. Biophys. Acta 1864 (2016) 908–915.

[28]

X. Hu, H. Wang, X. Diao, Z. Liu, K. Li, Y. Wu, Q. Liang, H. Wang, C. Huang, Transcriptome profiling and comparison of maize ear heterosis during the spikelet and floret differentiation stages, BMC Genomics 17 (2016) 959.

[29]

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, S.L. Salzberg, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol. 14 (2013) R36.

[30]

C. Trapnell, B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, S.L. Salzberg, B.J. Wold, L. Pachter, Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation, Nat. Biotechnol. 28 (2010) 511–515.

[31]

S. Shen, J.W. Park, Z. Lu, L. Lin, M.D. Henry, Y.N. Wu, Q. Zhou, Y. Xing, rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) E5593-E5601.

[32]

J.F. Degner, J.C. Marioni, A.A. Pai, J.K. Pickrell, E. Nkadori, Y. Gilad, J.K. Pritchard, Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data, Bioinformatics 25 (2009) 3207–3212.

[33]

Q. Gao, W. Sun, M. Ballegeer, C. Libert, W. Chen, Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing, Mol. Syst. Biol. 11 (2015) 816.

[34]

X. Wang, M. Yang, D. Ren, W. Terzaghi, X.W. Deng, G. He, Cis-regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis, Plant J. 97 (2019) 555–570.

[35]

A. Użarowska, B. Keller, H.-P. Piepho, G. Schwarz, C. Ingvardsen, G. Wenzel, T. Lübberstedt, Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height, Plant Mol. Biol. 63 (2006) 21–34.

[36]

Z.J. Chen, Genomic and epigenetic insights into the molecular bases of heterosis, Nat. Rev. Genet. 14 (2013) 471–482.

[37]

D.L. Auger, A.D. Gray, T.S. Ream, A. Kato, E.H. Coe Jr., J.A. Birchler, Nonadditive gene expression in diploid and triploid hybrids of maize, Genetics 169 (2005) 389–397.

[38]

R. Gu, L. Zhao, Y. Zhang, X. Chen, J. Bao, J. Zhao, Z. Wang, J. Fu, T. Liu, J. Wang, G. Wang, Isolation of a maize beta-glucosidase gene promoter and characterization of its activity in transgenic tobacco, Plant Cell Rep 25 (2006) 1157–1165.

[39]

X. Zhang, Z.H. Gonzalez-Carranza, S. Zhang, Y. Miao, C. Liu, J.A. Roberts, F-box proteins in plants, Annu. Plant Rev. 2 (2019) 307–328.

[40]
N.B. Eloy, N. Gonzalez, J. Van Leene, K. Maleux, H. Vanhaeren, L. De Milde, S. Dhondt, L. Vercruysse, E. Witters, R. Mercier, L. Cromer, G.T.S. Beemster, H. Remaut, M.C.E. Van Montagu, G. De Jaeger, P.C.G. Ferreira, D. Inzé, SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 13853–13858.
[41]

E. Bortiri, S. Hake, Flowering and determinacy in maize, J. Exp. Bot. 58 (2007) 909–916.

[42]

W. Tanaka, M. Pautler, D. Jackson, H.Y. Hirano, Grass meristems Ⅱ: inflorescence architecture, flower development and meristem fate, Plant Cell Physiol. 54 (2013) 313–324.

[43]

R. Sunkar, V. Chinnusamy, J. Zhu, J.K. Zhu, Small RNAs as big players in plant abiotic stress responses and nutrient deprivation, Trends Plant Sci. 12 (2007) 301–309.

[44]

O. Voinnet, Origin, biogenesis, and activity of plant MicroRNAs, Cell 136 (2009) 669–687.

[45]

G. Chuck, R. Meeley, S. Hake, Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1, Development 135 (2008) 3013–3019.

[46]

X. Wang, D.K. Stumpf, B.A. Larkins, Aspartate kinase 2. A candidate gene of a quantitative trait locus influencing free amino acid content in maize endosperm, Plant Physiol. 125 (2001) 1778–1787.

[47]

R. Sablowski, Coordination of plant cell growth and division: collective control or mutual agreement?, Curr. Opin. Plant Biol. 34 (2016) 54–60.

[48]

W. Mei, S. Liu, J.C. Schnable, C.T. Yeh, N.M. Springer, P.S. Schnable, W.B. Barbazuk, A comprehensive analysis of alternative splicing in paleopolyploid maize, Front. Plant Sci. 8 (2017) 694.

[49]

S.R. Thatcher, B. Li, Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation, Plant Cell 26 (2014) 3472.

[50]

C. Liao, Y. Peng, W. Ma, R. Liu, C. Li, Proteomic analysis revealed nitrogen-mediated metabolic, methylation and chromatin patterning developmental, and hormonal regulation of maize (Zea mays L.) ear growth, J. Exp. Bot. 63 (2012) 695–709.

[51]
F.E. Below, J.O. Cazetta, J.R. Seebauer, M.E. Westgate, K.J. Boote, Carbon/nitrogen interactions during ear and kernel development of maize, in: M. Westgate, K. Boote (Eds.), Physiology and Modeling Kernel Set in Maize, CSSAASA, USA, 2000, pp. 15–24.
[52]

B. Hirel, P. Bertin, I. Quilleré, W. Bourdoncle, Céline Attagnant, C. Dellay, A. Gouy, S. Cadiou, C. Retailliau, M. Falque, A. Gallais, Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize, Plant Physiol. 125 (2001) 1258–1270.

[53]

S.A. Goff, A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism, and implications for molecular breeding, New Phytol. 189 (2011) 923–937.

[54]

X. Hu, H. Wang, K. Li, Y. Wu, Z. Liu, C. Huang, Genome-wide proteomic profiling reveals the role of dominance protein expression in heterosis in immature maize ears, Sci. Rep. 7 (2017) 1–12.

[55]

J. Bao, S. Lee, C. Chen, X. Zhang, Y. Zhang, S. Liu, T. Clark, J. Wang, M. Cao, H. Yang, S.M. Wang, J. Yu, Serial analysis of gene expression study of a hybrid rice strain (LYP9) and Its parental cultivars, Plant Physiol. 138 (2005) 1216–1231.

[56]

X. Yang, H. Zhang, L. Li, Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis, Plant J. 70 (2012) 421–431.

The Crop Journal
Pages 476-486
Cite this article:
Hu X, Wang H, Li K, et al. Genome-wide alternative splicing variation and its potential contribution to maize immature-ear heterosis. The Crop Journal, 2021, 9(2): 476-486. https://doi.org/10.1016/j.cj.2020.09.003

286

Views

1

Downloads

5

Crossref

N/A

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 27 November 2019
Revised: 14 August 2020
Accepted: 23 October 2020
Published: 17 November 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return