AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

The heading-date gene Ghd7 inhibits seed germination by modulating the balance between abscisic acid and gibberellins

Yong Hua,b,1Song Songb,1Xiaoyu WengbAiqing Youa( )Yongzhong Xingb( )
Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Seed dormancy of cultivated rice was largely weakened during the progress of domestication. Correct timing and uniformity of seed germination are important for rapid seedling establishment and high-yield production. In the present study, we found that the heading-date gene Ghd7 acted as a negative regulator of germination. A mutant of ghd7 showed low sensitivity to exogenous ABA treatment during seed germination. Further investigation revealed reduced accumulation of ABA in mature ghd7 seeds as a consequence of dampened expression of OsNCED genes. Moreover, elevated GA3 level was detected in seeds of ghd7 mutant during imbibition course, which was attributed to the induction of genes responsible for the synthesis pathways of bioactive GAs. Thus, Ghd7 inhibits seed germination by increasing the ABA/GA3 ratio. Besides revealing pleiotropic effects of Ghd7, our results indicate its role in linking seed germination to growth-phase transition in rice, which would enrich the theoretical basis for future breeding practices.

References

[1]

W.E. Finch-Savage, G. Leubner-Metzger, Seed dormancy and the control of germination, New Phytol. 171 (2006) 501–523.

[2]

R. Finkelstein, W. Reeves, T. Ariizumi, C. Steber, Molecular aspects of seed dormancy, Annu. Rev. Plant Biol. 59 (1) (2008) 387–415, https://doi.org/10.1146/annurev.arplant.59.032607.092740.

[3]

Y. Liu, J. Fang, F. Xu, J. Chu, C. Yan, M.R. Schläppi, Y. Wang, C. Chu, Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars, J. Genet. Genomics 41 (2014) 327–338.

[4]

J.D. Bewley, Seed germination and dormancy, Plant Cell 9 (1997) 1055–1066.

[5]

A. Frey, D. Effroy, V. Lefebvre, M. Seo, F. Perreau, A. Berger, J. Sechet, A. To, H.M. North, A. Marion-Poll, Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members, Plant J. 70 (2012) 501–512.

[6]

G.K. Agrawal, M. Yamazaki, M. Kobayashi, R. Hirochika, A. Miyao, H. Hirochika, Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene, Plant Physiol. 125 (3) (2001) 1248–1257, https://doi.org/10.1104/pp.125.3.1248.

[7]

C. Martinez-Andujar, M.I. Ordiz, Z. Huang, M. Nonogaki, R.N. Beachy, H. Nonogaki, Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy, Proc. Natl. Acad. Sci. 108 (41) (2011) 17225–17229, https://doi.org/10.1073/pnas.1112151108.

[8]

M. Nonogaki, K. Sall, E. Nambara, H. Nonogaki, Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds, Plant J. 78 (3) (2014) 527–539, https://doi.org/10.1111/tpj.12472.

[9]

B. Kucera, M.A. Cohn, G. Leubner-Metzger, Plant hormone interactions during seed dormancy release and germination, Seed Sci. Res. 15 (4) (2005) 281–307, https://doi.org/10.1079/SSR2005218.

[10]

M. Okamoto, A. Kuwahara, M. Seo, T. Kushiro, T. Asami, N. Hirai, Y. Kamiya, T. Koshiba, E. Nambara, CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in arabidopsis, Plant Physiol. 141 (1) (2006) 97–107, https://doi.org/10.1104/pp.106.079475.

[11]

F. Gubler, A.A. Millar, J.V. Jacobsen, Dormancy release, ABA and pre-harvest sprouting, Curr. Opin. Plant Biol. 8 (2) (2005) 183–187, https://doi.org/10.1016/j.pbi.2005.01.011.

[12]

K. Graeber, A. Linkies, T. Steinbrecher, K. Mummenhoff, D. Tarkowská, V. Turečková, M. Ignatz, K. Sperber, A. Voegele, H. de Jong, T. Urbanová, M. Strnad, G. Leubner-Metzger, Delay of germination 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) E3571–E3580.

[13]

M.J. Holdsworth, L. Bentsink, W.J.J. Soppe, Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination, New Phytol. 179 (2008) 33–54.

[14]

S. Lee, H. Cheng, K.E. King, W. Wang, Y. He, A. Hussain, J. Lo, N.P. Harberd, J. Peng, Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition, Genes Dev. 16 (2002) 646–658.

[15]

K. Shu, H. Zhang, S. Wang, M. Chen, Y. Wu, S. Tang, C. Liu, Y. Feng, X. Cao, Q. Xie, ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis, PLoS Genet. 9 (2013) e1003577.

[16]

H. Ye, J. Feng, L. Zhang, J. Zhang, M.S. Mispan, Z. Cao, D.H. Beighley, J. Yang, X.Y. Gu, Map-based cloning of seed dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice, Plant Physiol. 169 (2015) 2152–2165.

[17]

Y. Yamauchi, N. Takeda-Kamiya, A. Hanada, M. Ogawa, A. Kuwahara, M. Seo, Y. Kamiya, S. Yamaguchi, Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed arabidopsis thaliana seeds, Plant Cell Physiol. 48 (2007) 555–561.

[18]

C. Miao, Z. Wang, L. Zhang, J. Yao, K. Hua, X. Liu, H. Shi, J.K. Zhu, The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice, Nat. Commun. 10 (2019) 3822.

[19]

P.A. Tuan, R. Kumar, P.K. Rehal, P.K. Toora, B.T. Ayele, Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals, Front. Plant Sci. 9 (2018) 668.

[20]

C.N. White, W.M. Proebsting, P. Hedden, C.J. Rivin, Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways, Plant Physiol. 122 (4) (2000) 1081–1088, https://doi.org/10.1104/pp.122.4.1081.

[21]

M. Chen, D.R. MacGregor, A. Dave, H. Florance, K. Moore, K. Paszkiewicz, N. Smirnoff, I.A. Graham, S. Penfield, Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year, Proc. Natl. Acad. Sci. U. S. A. 111 (52) (2014) 18787–18792, https://doi.org/10.1073/pnas.1412274111.

[22]

M. Chen, S. Penfield, Feedback regulation of COOLAIR expression controls seed dormancy and flowering time, Science 360 (6392) (2018) 1014–1017, https://doi.org/10.1126/science:aar7361.

[23]

G.C.K. Chiang, D. Barua, E.M. Kramer, R.M. Amasino, K. Donohue, Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana, PNAS 106 (28) (2009) 11661–11666, https://doi.org/10.1073/pnas.0901367106.

[24]

W. Xue, Y. Xing, X. Weng, Y. Zhao, W. Tang, L. Wang, H. Zhou, S. Yu, C. Xu, X. Li, Q. Zhang, Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice, Nat. Genet. 40 (6) (2008) 761–767, https://doi.org/10.1038/ng.143.

[25]

X. Weng, L. Wang, J. Wang, Y. Hu, H. Du, C. Xu, Y. Xing, X. Li, J. Xiao, Q. Zhang, Grain number, plant height, and heading Date7 is a central regulator of growth, development, and stress response, Plant Physiol. 164 (2) (2014) 735–747, https://doi.org/10.1104/pp.113.231308.

[26]

Y. Hu, S. Li, Y. Xing, Lessons from natural variations: artificially induced heading date variations for improvement of regional adaptation in rice, Theor. Appl. Genet. 132 (2019) 383–394.

[27]

P.A. Counce, T.C. Keisling, A.J. Mitchell, A uniform, objective, and adaptive system for expressing rice development, Crop Sci. 40 (2) (2000) 436–443, https://doi.org/10.2135/cropsci2000.402436x.

[28]

G. Wang, G. Wang, X. Zhang, F. Wang, R. Song, Isolation of high quality RNA from cereal seeds containing high levels of starch: RNA extraction from cereal seeds, Phytochem. Anal. 23 (2) (2012) 159–163, https://doi.org/10.1002/pca.1337.

[29]

S. Song, G. Wang, H. Wu, X. Fan, L. Liang, H. Zhao, S. Li, Y. Hu, H. Liu, M. Ayaad, Y. Xing, OsMFT2 is involved in the regulation of ABA signaling‐mediated seed germination through interacting with OsbZIP23/66/72 in rice, Plant J. 103 (2) (2020) 532–546, https://doi.org/10.1111/tpj.14748.

[30]

K. Shu, X.D. Liu, Q. Xie, Z.H. He, Two faces of one seed: hormonal regulation of dormancy and germination, Mol. Plant 9 (2016) 34–45.

[31]

J. Fang, C. Chai, Q. Qian, C. Li, J. Tang, L. Sun, Z. Huang, X. Guo, C. Sun, M. Liu, Y. Zhang, Q. Lu, Y. Wang, C. Lu, B. Han, F. Chen, Z. Cheng, C. Chu, Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice, Plant J. 54 (2) (2008) 177–189, https://doi.org/10.1111/j.1365-313X.2008.03411.x.

[32]

F. Liu, H. Zhang, G. Wu, J. Sun, L. Hao, X. Ge, J. Yu, W. Wang, Sequence variation and expression analysis of seed dormancy- and germination-associated ABA- and GA-related genes in rice cultivars, Front. Plant Sci. 2 (2011) 17.

[33]

H. Saika, M. Okamoto, K. Miyoshi, T. Kushiro, S. Shinoda, Y. Jikumaru, M. Fujimoto, T. Arikawa, H. Takahashi, M. Ando, S.I. Arimura, A. Miyao, H. Hirochika, Y. Kamiya, N. Tsutsumi, E. Nambara, M. Nakazono, Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice, Plant Cell Physiol. 48 (2007) 287–298.

[34]

J. Yamaguchi, Analysis of embryo-specific α-amylase using isolated mature rice embryos, Jpn. J. Breed. 48 (1998) 365–370.

[35]

H. Tsuji, K. Aya, M. Ueguchi-Tanaka, Y. Shimada, M. Nakazono, R. Watanabe, N.K. Nishizawa, K. Gomi, A. Shimada, H. Kitano, GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers, Plant J. 47 (2006) 427–444.

[36]

S. Gazzarrini, A.Y.L. Tsai, Hormone cross-talk during seed germination, EssaysBiochem. 58 (2015) 151–164.

[37]

H. Kim, H. Hwang, J.W. Hong, Y.N. Lee, I.P. Ahn, I.S. Yoon, S. Yoo, S. Lee, S.C. Lee, B.G. Kim, A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth, J. Exp. Bot. 63 (2011) 1013–1024.

[38]

M.L. Fournier, A. Paulson, N. Pavelka, A.L. Mosley, K. Gaudenz, W.D. Bradford, E. Glynn, H. Li, M.E. Sardiu, B. Fleharty, C. Seidel, L. Florens, M.P. Washburn, Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin, Mol. Cell Proteomics 9 (2) (2010) 271–284, https://doi.org/10.1074/mcp.M900415-MCP200.

[39]

L. Ponnala, Y. Wang, Q. Sun, K.J. van Wijk, Correlation of mRNA and protein abundance in the developing maize leaf, Plant J. 78 (3) (2014) 424–440, https://doi.org/10.1111/tpj.12482.

[40]

X. He, J. Zhang, Toward a molecular understanding of pleiotropy, Genetics 173 (4) (2006) 1885–1891, https://doi.org/10.1534/genetics.106.060269.

[41]

H. Itoh, Y. Nonoue, M. Yano, T. Izawa, A pair of floral regulators sets critical day length for Hd3a florigen expression in rice, Nat. Genet. 42 (2010) 635.

The Crop Journal
Pages 297-304
Cite this article:
Hu Y, Song S, Weng X, et al. The heading-date gene Ghd7 inhibits seed germination by modulating the balance between abscisic acid and gibberellins. The Crop Journal, 2021, 9(2): 297-304. https://doi.org/10.1016/j.cj.2020.09.004

268

Views

2

Downloads

11

Crossref

N/A

Web of Science

12

Scopus

2

CSCD

Altmetrics

Received: 22 April 2020
Revised: 29 July 2020
Accepted: 23 September 2020
Published: 17 November 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return