AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

The G-protein α subunit GhGPA positively regulates Gossypium hirsutum resistance to Verticillium dahliae via induction of SA and JA signaling pathways and ROS accumulation

Bin ChenYan ZhangJun YangMan ZhangQingming MaXingfen Wang( )Zhiying Ma( )
State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071001, Hebei, China
Show Author Information

Abstract

Verticillium wilt, a devastating disease in cotton caused by Verticillium dahliae, reduces cotton quality and yield. Heterotrimeric GTP-binding proteins, consisting of Gα, Gβ, and Gγ subunits, transducers of receptor signaling, function in a wide range of biological events. However, the function of Gα proteins in the regulation of defense responses in plants is largely unexplored, except for a few reports on model species. In the present study, a cotton G-protein α-subunit-encoding gene (GhGPA) was isolated from Verticillium wilt-resistant Gossypium hirsutum (upland cotton) cv. ND601. GhGPA transcription was up-regulated under V. dahliae stress, with higher expression in tolerant than in susceptible cotton cultivars. Subcellular localization revealed GhGPA to be located in the plasma membrane. GhGPA shows high (85.0%) identity with Arabidopsis AT2G26300 (AtGPA1), and AtGPA1 gpa1-4 mutants displayed susceptibility to V. dahliae. Ectopic expression of GhGPA successfully restored the resistance of Arabidopsis gpa1-4 mutants to Verticillium wilt and made them more resistant than the wild type. Overexpression of GhGPA in Arabidopsis markedly increased the resistance and resulted in dramatic up-regulation of pathogenesis-related (PR) genes and increased in H2O2 accumulation and salicylic acid (SA) and jasmonic acid (JA) contents. However, suppressing GhGPA expression via virus-induced gene silencing (VIGS) increased susceptibility to Verticillium wilt, down-regulated the expression of PR and marker genes in SA and JA signaling pathways, and reduced H2O2 content. The contents of SA and JA in Arabidopsis gpa1-4 and VIGS cotton were lower than those in the wild type and empty-vector control. However, GhGPA-overexpressing Arabidopsis contained more SA and JA than the wild type when inoculated with V. dahliae. Thus, GhGPA plays a vital role in Verticillium wilt resistance by inducing SA and JA signaling pathways and regulating the production of reactive oxygen species. These findings not only broaden our knowledge about the biological role of GhGPA, but also shed light on the defense mechanisms involving GhGPA against V. dahliae in cotton.

References

[1]

G.F. Pegg, B.L. Brady, Verticillium wilts, CABI, Wallingford, UK, 2002

[2]

H.J. Mo, X.F. Wang, Y. Zhang, G.Y. Zhang, J.F. Zhang, Z.Y. Ma, Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae, Plant J. 83 (2015) 962–975.

[3]

L.B. Han, Y.B. Li, F.X. Wang, W.Y. Wang, J. Liu, J.H. Wu, N.Q. Zhong, S.J. Wu, G.L. Jiao, H.Y. Wang, G.X. Xia, The cotton apoplastic protein CRR1 stabilizes chitinase 28 to facilitate defense against the fungal pathogen Verticillium dahliae, Plant Cell 31 (2019) 520–536.

[4]

Z.K. Li, B. Chen, X.X. Li, J.P. Wang, Y. Zhang, X.F. Wang, Y.Y. Yan, H.F. Ke, J. Yang, J.H. Wu, G.N. Wang, G.Y. Zhang, L.Q. Wu, X.Y. Wang, Z.Y. Ma, A newly identified cluster of glutathione S-transferase genes provides Verticillium wilt resistance in cotton, Plant J. 98 (2019) 213–227.

[5]

Y. Zhang, L.Z. Wu, X.F. Wang, B. Chen, J. Zhao, J. Cui, Z.K. Li, J. Yang, L.Q. Wu, J.H. Wu, G.Y. Zhang, Z.Y. Ma, The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants, Mol. Plant Pathol. 20 (2019) 309–322.

[6]

G.L. Wang, J. Xu, L.C. Li, Z. Guo, Q.X. Si, G.Z. Zhu, X.Y. Wang, W.Z. Guo, GbCYP86A1-1 from Gossypium barbadense positively regulates defence against Verticillium dahliae by cell wall modification and activation of immune pathways, Plant Biotechnol. J. 18 (2020) 222–238.

[7]

J. Yang, Y. Zhang, X.F. Wang, W.Q. Wang, Z.K. Li, J.H. Wu, G.N. Wang, L.Q. Wu, G.Y. Zhang, Z.Y. Ma, HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation, BMC Plant Biol. 18 (2018) 339.

[8]

S. Pandey, Heterotrimeric G-protein signaling in plants: conserved and novel mechanisms, Annu. Rev. Plant Biol. 70 (2019) 213–238.

[9]

D. Urano, J.C. Jones, H. Wang, M. Matthews, W. Bradford, J.L. Bennetzen, A.M. Jones, G protein activation without a GEF in the plant kingdom, PLoS Genet. 8 (2012) e1002756.

[10]

H. Ma, M.F. Yanofsky, E.M. Meyerowitz, Molecular cloning and characterization of GPA1, a G protein alpha subunit gene from Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A. 87 (1990) 3821–3825.

[11]

S. Lee, C.M. Rojas, Y. Ishiga, S. Pandey, K.S. Mysore, Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens, PLoS ONE 8 (2013) e82445.

[12]

W. Zeng, S.Y. He, A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis, Plant Physiol. 153 (2010) 1188–1198.

[13]

D.P. Lu, S.J. Wu, X.Q. Gao, Y.L. Zhang, L.B. Shan, P. He, A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 496–501.

[14]

L. Xu, X. Yao, N. Zhang, B.Q. Gong, J.F. Li, Dynamic G protein alpha signaling in Arabidopsis innate immunity, Biochem. Biophys. Res. Commun. 516 (2019) 1039–1045.

[15]

H.J. Zhang, M.F. Wang, W. Wang, D.Q. Li, Q. Huang, Y.C. Wang, X.B. Zheng, Z.G. Zhang, Silencing of G proteins uncovers diversified plant responses when challenged by three elicitors in Nicotiana benthamiana, Plant Cell Environ. 35 (2012) 72–85.

[16]

U. Suharsono, Y. Fujisawa, T. Kawasaki, Y. Iwasaki, H. Satoh, K. Shimamoto, The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 13307–13312.

[17]

X. Wang, J. Ma, G.Y. Zhang, X.H. Li, X.F. Wang, Z.Y. Ma, Proteomic analysis of cotton leaf under Verticillium dahliae stress, Cotton Sci. 19 (2007) 273–278.

[18]

Z.Y. Ma, S.P. He, X.F. Wang, J.L. Sun, Y. Zhang, G.Y. Zhang, L.Q. Wu, Z.K. Li, Z.H. Liu, G.F. Sun, Y.Y. Yan, Y.H. Jia, J. Yang, Z.E. Pan, Q.S. Gu, X.Y. Li, Z.W. Sun, P.H. Dai, Z.W. Liu, W.F. Gong, J.H. Wu, M. Wang, H.E. Liu, K.Y. Feng, H.F. Ke, J.D. Wang, H.Y. Lan, G.N. Wang, J. Peng, N. Wang, L.R. Wang, B.Y. Pang, Z. Peng, R.Q. Li, S.L. Tian, X.M. Du, Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield, Nat. Genet. 50 (2018) 803–813.

[19]

S.D. Yoo, Y.H. Cho, J. Sheen, Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis, Nat. Protoc. 2 (2007) 1565–1572.

[20]

R.P. Hellens, E.A. Edwards, N.R. Leyland, S. Bean, P.M. Mullineaux, pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation, Plant Mol. Biol. 42 (2000) 819–832.

[21]

B.K. Nelson, X. Cai, Andreas Nebenführ, A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants, Plant J. 51 (2010) 1126–1136.

[22]

Y. Zhang, X.F. Wang, Z.G. Ding, Q. Ma, G.R. Zhang, S.L. Zhang, Z.K. Li, L.Q. Wu, G.Y. Zhang, Z.Y. Ma, Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement, BMC Genomics 14 (2013) 637.

[23]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△Ct method, Methods 25 (2000) 402–408.

[24]

T. Nakagawa, T. Suzuki, S. Murata, S. Nakamura, T. Hino, K. Maeo, R. Tabata, T. Kawai, K. Tanaka, Y. Niwa, Y. Watanabe, K. Nakamura, T. Kimura, S. Ishiguro, Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants, Biosci. Biotechnol. Biochem. 71 (2007) 2095–2100.

[25]

S.J. Clough, A.F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J. 16 (1998) 735–743.

[26]

J. Lee, M. Oh, H. Park, I. Lee, SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy, Plant J. 55 (2008) 832–843.

[27]

B.L. Zhang, Y.W. Yang, T.Z. Chen, W.G. Yu, T.L. Liu, H.J. Li, X.H. Fan, Y.Z. Ren, D.Y. Shen, L. Liu, D.L. Dou, Y.H. Chang, Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae, PLoS ONE 7 (2012) e51091.

[28]

X.Q. Gao, T. Wheeler, Z.H. Li, C.M. Kenerley, P. He, L.B. Shan, Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt, Plant J. 66 (2011) 293–305.

[29]

J. Yang, Q. Ma, Y. Zhang, X.F. Wang, G.Y. Zhang, Z.Y. Ma, Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt, Gene 575 (2016) 687–694.

[30]

Y. Zhang, X.F. Wang, S. Yang, J.N. Chi, G.Y. Zhang, Z.Y. Ma, Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana, Plant Cell Rep. 30 (2011) 2085–2096.

[31]

J. Xu, J. Meng, X.Z. Meng, Y.T. Zhao, J.M. Liu, T.F. Sun, Y.D. Liu, Q.M. Wang, S.Q. Zhang, Pathogen-responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity, Plant Cell 28 (2016) 1144–1162.

[32]

D. Urano, A.M. Jones, Heterotrimeric G protein-coupled signaling in plants, Annu. Rev. Plant Biol. 65 (2014) 365–384.

[33]

C.L. Zhong, C. Zhang, J.Z. Liu, Heterotrimeric G protein signaling in plant immunity, J. Exp. Bot. 70 (2019) 1109–1118.

[34]

P.N. Dodds, J.P. Rathjen, Plant immunity: towards an integrated view of plant-pathogen interactions, Nat. Rev. Genet. 11 (2010) 539–548.

[35]

A.M. Van der Burgh, M. Joosten, Plant immunity: thinking outside and inside the box, Trends Plant Sci. 24 (2019) 587–601.

[36]

M.N. Aranda-Sicilia, Y. Trusov, N. Maruta, D. Chakravorty, Y. Zhang, J.R. Botella, Heterotrimeric G proteins interact with defense-related receptor-like kinases in Arabidopsis, J. Plant. Physiol. 188 (2015) 44–48.

[37]

X.X. Liang, P.T. Ding, K.H. Lian, J.L. Wang, M.M. Ma, L. Li, L. Li, M. Li, X.J. Zhang, S. Chen, Y.L. Zhang, J.M. Zhou, Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor, Elife 5 (2016) e13568.

[38]

Y.C. Peng, L.L. Chen, S.J. Li, Y.Y. Zhang, R. Xu, Z.P. Liu, W.X. Liu, J.J. Kong, X.H. Huang, Y.C. Wang, B.J. Cheng, L.Y. Zheng, Y.H. Li, BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis, Nat. Commun. 9 (2018) 1522.

[39]

R.B. Ferreira, S. Monteiro, R. Freitas, C.N. Santos, Z. Chen, L.M. Batista, J. Duarte, A. Borges, A.R. Teixeira, The role of plant defence proteins in fungal pathogenesis, Mol. Plant Pathol. 8 (2007) 677–700.

[40]

W. Gao, L. Long, L.F. Zhu, L. Xu, W.H. Gao, L.Q. Sun, L.L. Liu, X.L. Zhang, Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae, Mol. Cell Proteomics 12 (2013) 3690–3703.

[41]

Y. Zhang, X.F. Wang, W. Rong, J. Yang, Z.K. Li, L.Q. Wu, G.Y. Zhang, Z.Y. Ma, Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G. hirsutum are associated with resistance to Verticillium dahliae, Mol. Plant-Microbe Interact. 30 (2017) 984–996.

[42]

R. Bari, J.D.G. Jones, Role of plant hormones in plant defence responses, Plant Mol. Biol. 69 (2008) 473–488.

[43]

A.C. Vlot, D.F. Klessig, S.W. Park, Systemic acquired resistance: the elusive signal(s), Curr. Opin. Plant Biol. 11 (2008) 436–442.

[44]

M.A. Blazquez, L. Ding, H. Xu, H. Yi, L. Yang, Z. Kong, L. Zhang, S. Xue, H. Jia, Z. Ma, Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways, PLoS ONE 6 (2011) e19008.

[45]

A. Coego, V. Ramirez, M.J. Gil, V. Flors, B. Mauch-Mani, P. Vera, An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens, Plant Cell 17 (2005) 2123–2137.

[46]

J. Heller, P. Tudzynski, Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease, Annu. Rev. Phytopathol. 49 (2011) 369–390.

[47]

S. Lehmann, M. Serrano, F. L'Haridon, S.E. Tjamos, J.P. Metraux, Reactive oxygen species and plant resistance to fungal pathogens, Phytochemistry 112 (2015) 54–62.

[48]

C.J. Xie, C.Y. Wang, X.K. Wang, X.Y. Yang, Proteomics-based analysis reveals that Verticillium dahliae toxin induces cell death by modifying the synthesis of host proteins, J. Gen. Plant Pathol. 79 (2013) 335–345.

The Crop Journal
Pages 823-833
Cite this article:
Chen B, Zhang Y, Yang J, et al. The G-protein α subunit GhGPA positively regulates Gossypium hirsutum resistance to Verticillium dahliae via induction of SA and JA signaling pathways and ROS accumulation. The Crop Journal, 2021, 9(4): 823-833. https://doi.org/10.1016/j.cj.2020.09.008

281

Views

4

Downloads

17

Crossref

N/A

Web of Science

15

Scopus

2

CSCD

Altmetrics

Received: 30 April 2020
Revised: 20 September 2020
Accepted: 03 November 2020
Published: 26 November 2020
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NCND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return