AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Genetic mapping and identification of Lgf loci controlling green fuzz in Upland cotton (Gossypium hirsutum L.)

Dexin LiuXueying LiuYao SuXiao ZhangKai GuoZhonghua TengJian ZhangDajun LiuZhengsheng Zhang( )
College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
Show Author Information

Abstract

Naturally colored cotton fiber is environment-friendly but has monotonous color and poor fiber quality. Identification of green fiber or fuzz genes would aid in investigating the biosynthesis of green pigments in cotton fibers. In this study, we established a mapping population and found that the trait (white lint and green fuzz) from Gossypium hirsutum race latifolium is controlled by an incompletely dominant gene. The locus was mapped to a 71-kb interval on chromosome 21 containing seven genes, including a transcription factor with similarity to Arabidopsis MYB9. Harboring 13 SNPs and a 4-bp insertion/deletion in its promoter, GhMYB9 was highly up-regulated in the critical period for green pigment development in fuzz. Virus-induced gene silencing of GhMYB9 in a green-fuzz accession of G. hirsutum race latifolium TX-41 conferred white or light green fuzz. These results suggest that GhMYB9 is an important contributor to green pigments in cotton fiber and shed light on the regulatory mechanism controlling green pigmentation.

References

[1]
D.K. Dickerson, E.F. Lane, D.F. Rodriguez, Naturally Colored Cotton: Resistance to Changes in Color and Durability When Refurbished with Selected Laundry Aids, California Agricultural Technology Institute, California State University, Fresno, California, USA, 1999.
[2]

A. Khatri, M.H. Peerzada, M. Mohsin, M. White, A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution, J. Clean. Prod. 87 (2015) 50–57.

[3]

Y. Dutt, X.D. Wang, Y.G. Zhu, Y.Y. Li, Breeding for high yield and fibre quality in coloured cotton, Plant Breed. 123 (2004) 145–151.

[4]

S. Hua, S. Yuan, I.H. Shamsi, X. Zhao, X. Zhang, Y. Liu, G. Wen, X. Wang, H. Zhang, A comparison of three isolines of cotton differing in fiber color for yield, quality, and photosynthesis, Crop Sci. 49 (2009) 983–989.

[5]

H. Feng, L. Guo, G. Wang, J. Sun, Z. Pan, S. He, H. Zhu, J. Sun, X. Du, The negative correlation between fiber color and quality traits revealed by QTL analysis, PLoS ONE 10 (2015) e0129490.

[6]

J.O. Ware, L.I. Benedict, Color cottons and their economic, J. Hered. 2 (1962) 57–65.

[7]

R.J. Kohel, Genetic analysis of fiber color variants in cotton, Crop Sci. 25 (1985) 793–797.

[8]

D.J. Hinchliffe, B.D. Condon, G. Thyssen, M. Naoumkina, C.A. Madison, M. Reynolds, C.D. Delhom, D.D. Fang, P. Li, J. McCarty, The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres, J. Exp. Bot. 67 (2016) 5461–5471.

[9]

T.W. Wen, M. Wu, C. Shen, B. Gao, X.L. Zhu, C.Y. Zhang, Z.X.L. You, Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum), Plant Biotechnol. J. 16 (2018) 1654–1666.

[10]

Q. Yan, Y. Wang, Q. Li, Z. Zhang, H. Ding, Y. Zhang, H. Liu, M. Luo, D. Liu, W. Song, H. Liu, D. Yao, X. Ouyang, Y. Li, X. Li, Y. Pei, Y. Xiao, Up-regulation of GhTT2-3A in cotton fibres during secondary wall thickening results in brown fibres with improved quality, Plant Biotechnol. J. 16 (2018) 1735–1747.

[11]

Y. Xiao, Q. Yan, H. Ding, M. Luo, L. Hou, M. Zhang, D. Yao, H.S. Liu, X. Li, J. Zhao, Y. Pei, Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber, PLoS ONE 9 (2014) e86344.

[12]

H. Feng, Y. Li, S. Wang, L. Zhang, Y. Liu, F. Xue, Y. Sun, Y. Wang, J. Sun, Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.), J. Exp. Bot. 65 (2014) 5759–5769.

[13]

M. Ma, M. Hussain, H. Memon, W. Zhou, Structure of pigment compositions and radical scavenging activity of naturally green-colored cotton fiber, Cellulose 23 (2015) 955–963.

[14]

J.O. Ware, Inheritance of lint colors in Upland cotton, Agron. J. 24 (1932) 550–562.

[15]
G.A. Niles, C.V. Feaster, in: R.J. Kohel, C.F. Lewis (Eds.), Breeding, Cotton, American Society of Agronomy, Madison, WI, USA, 1984, pp. 201–231.
[16]

J.F. Wendel, C.L. Brubaker, A.E. Percival, Genetic diversity in Gossypium hirsutum and the origin of Upland cotton, Am. J. Bot. 79 (1992) 1291–1310.

[17]

D. Liu, F. Liu, X. Shan, J. Zhang, S. Tang, X. Fang, X. Liu, W. Wang, Z. Tan, Z. Teng, Z. Zhang, D. Liu, Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in Upland cotton (Gossypium hirsutum L.), Mol. Genet. Genomics 290 (2015) 1683–1700.

[18]

A. Schmutz, T. Jenny, U. Ryser, A caffeoyl-fatty acid-glycerol ester from wax associated with green cotton fibre suberin, Phytochemistry 36 (1994) 1343–1346.

[19]

L. Moire, A. Schmutz, A. Buchala, B. Yan, R.E. Stark, U. Ryser, Glycerol is a suberin monomer. New experimental evidence for an old hypothesis, Plant Physiol. 119 (1999) 1137–1146.

[20]

H. Feng, Y. Yang, S. Sun, Y. Li, L. Zhang, J. Tian, Q. Zhu, Z. Feng, H. Zhu, J. Sun, Molecular analysis of caffeoyl residues related to pigmentation in green cotton fibers, J. Exp. Bot. 68 (2017) 4559–4569.

[21]

S. Tang, Z. Teng, T. Zhai, X. Fang, F. Liu, D. Liu, J. Zhang, D. Liu, S. Wang, K. Zhang, Q. Shao, Z. Tan, A.H. Paterson, Z. Zhang, Construction of genetic map and QTL analysis of fiber quality traits for Upland cotton (Gossypium hirsutum L.), Euphytica 201 (2014) 195–213.

[22]

D.X. Liu, Z. Teng, J. Kong, X. Liu, W. Wang, X. Zhang, T. Zhai, X. Deng, J. Wang, J. Zeng, Y. Xiao, K. Guo, J. Zhang, D. Liu, W. Wang, Z. Zhang, Natural variation in a CENTRORADIALIS homolog contributed to cluster fruiting and early maturity in cotton, BMC Plant Biol. 18 (2018) 286.

[23]

Z. Zhang, Y. Xiao, M. Luo, X. Li, X. Luo, L. Hou, D. Li, Y. Pei, Construction of a genetic linkage map and QTL analysis of fiber-related traits in Upland cotton (Gossypium hirsutum L.), Euphytica 144 (2005) 91–99.

[24]

D. Liu, J. Zhang, X. Liu, W. Wang, D. Liu, Z. Teng, X. Fang, Z. Tan, S. Tang, J. Yang, J. Zhong, Z. Zhang, Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T1 region in Upland cotton, BMC Genomics 17 (2016) 295.

[25]
J.W. van Ooihen, JoinMap® 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations, Kyazma BV, Wageningen, Netherlands, 2006. https://www.kyazma.nl/index.php/JoinMap.
[26]

S. Artico, S.M. Nardeli, O. Brilhante, M.F. Grossi-de-Sa, M. Alves-Ferreira, Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data, BMC Plant Biol. 10 (2010) 49.

[27]

W.W. Wang, Z.Y. Tan, Y.Q. Xu, A.A. Zhu, Y. Li, J. Yao, R. Tian, X.M. Fang, X.Y. Liu, Y.M. Tian, Z.H. Teng, J. Zhang, D.J. Liu, D.X. Liu, H.H. Shang, F. Liu, Z.S. Zhang, Chromosome structural variation of two cultivated tetraploid cottons and their ancestral diploid species based on a new high-density genetic map, Sci. Rep. 7 (2017) 7640.

[28]

A.H. Paterson, J.F. Wendel, H. Gundlach, H. Guo, J. Jenkins, D. Jin, D. Llewellyn, K.C. Showmaker, S. Shu, J. Udall, M.J. Yoo, R. Byers, W. Chen, A. Doron-Faigenboim, M.V. Duke, L. Gong, J. Grimwood, C. Grover, K. Grupp, G. Hu, T.H. Lee, J. Li, L. Lin, T. Liu, B.S. Marler, J.T. Page, A.W. Roberts, E. Romanel, W.S. Sanders, E. Szadkowski, X. Tan, H. Tang, C. Xu, J. Wang, Z. Wang, D. Zhang, L. Zhang, H. Ashrafi, F. Bedon, J.E. Bowers, C.L. Brubaker, P.W. Chee, S. Das, A.R. Gingle, C.H. Haigler, D. Harker, L.V. Hoffmann, R. Hovav, D.C. Jones, C. Lemke, S. Mansoor, M. ur Rahman, L.N. Rainville, A. Rambani, U.K. Reddy, J.K. Rong, Y. Saranga, B.E. Scheffler, J.A. Scheffler, D.M. Stelly, B.A. Triplett, A. van Deynze, M.F. Vaslin, V.N. Waghmare, S.A. Walford, R.J. Wright, E.A. Zaki, T. Zhang, E.S. Dennis, K.F. Mayer, D.G. Peterson, D.S. Rokhsar, X. Wang, J. Schmutz, Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres, Nature 492 (2012) 423–427.

[29]

Y. Hu, J.D. Chen, L. Fang, Z.Y. Zhang, W. Ma, Y.C. Niu, L.Z. Ju, J.Q. Deng, T. Zhao, J.M. Lian, K. Baruch, D. Fang, X. Liu, Y.L. Ruan, M.U. Rahman, J.L. Han, K. Wang, Q. Wang, H.T. Wu, G.F. Mei, Y.H. Zang, Z.G. Han, C.Y. Xu, W.J. Shen, D.F. Yang, Z.F. Si, F. Dai, L.F. Zou, F. Huang, Y.L. Bai, Y.G. Zhang, A. Brodt, H. Ben-Hamo, X.F. Zhu, B.L. Zhou, X.Y. Guan, S.J. Zhu, X.Y. Chen, T.Z. Zhang, Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton, Nat. Genet. 51 (2019) 739–748.

[30]

S. Yuan, S. Hua, W. Malik, N. Bibi, X. Wang, Physiological and biochemical dissection of fiber development in colored cotton, Euphytica 187 (2012) 215–226.

[31]

D. Ma, Y. Hu, C. Yang, B. Liu, L. Fang, Q. Wan, W. Liang, G. Mei, L. Wang, H. Wang, L. Ding, C. Dong, M. Pan, J. Chen, S. Wang, S. Chen, C. Cai, X. Zhu, X. Guan, B. Zhou, S. Zhu, J. Wang, W. Guo, X. Chen, T. Zhang, Genetic basis for glandular trichome formation in cotton, Nat. Commun. 7 (2016) 10456.

[32]

R.J. Andres, V. Coneva, M.H. Frank, J.R. Tuttle, L.F. Samayoa, S.W. Han, B. Kaur, L. Zhu, H. Fang, D.T. Bowman, M. Rojas-Pierce, C.H. Haigler, D.C. Jones, J.B. Holland, D.H. Chitwood, V. Kuraparthy, Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.), Proc. Natl. Acad. Sci. U.S.A. 114 (2017) 57–66.

[33]
J.E. Endrizzi, E.L. Turcotte, R.J. Kohel, in: R.J. Kohel, C.F. Lewis (Eds.), Qualitive genetics, cytology, and cytogentics, Cotton, Agronomy Society of America, Madison, WI, USA, 1984, pp. 81–119.
[34]

R. Stracke, M. Werber, B. Weisshaar, The R2R3-MYB gene family in Arabidopsis thaliana, Curr. Opin. Plant Biol. 4 (2001) 447–456.

[35]

J.O. Borevitz, Y. Xia, J. Blount, R.A. Dixon, C. Lamb, Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis, Plant Cell 12 (2000) 2383–2394.

[36]

X. Li, X. Ouyang, Z. Zhang, L. He, Y. Wang, Y. Li, J. Zhao, Z. Chen, C. Wang, L. Ding, Y. Pei, Y. Xiao, Over-expression of the red plant gene R1 enhances anthocyanin production and resistance to bollworm and spider mite in cotton, Mol. Genet. Genomics 294 (2019) 469–478.

[37]

J. Lashbrooke, H. Cohen, D. Levy-Samocha, O. Tzfadia, I. Panizel, V. Zeisler, H. Massalha, A. Stern, L. Trainotti, L. Schreiber, F. Costa, A. Aharoni, MYB107 and MYB9 homologs regulate suberin deposition in angiosperms, Plant Cell 28 (2016) 2097–2116.

[38]

U. Ryser, P.J. Holloway, Ultrastructure and chemistry of soluble and polymeric lipids in cell walls from seed coats and fibres of Gossypium species, Planta 163 (1985) 151–163.

[39]

C.M. Conrad, The high wax content of green lint cotton, Science 94 (1941) 113.

[40]

U. Ryser, H. Meier, P.J. Holloway, Identification and localization of suberin in the cell walls of green cotton fibres (Gossypium hirsutum L.), var. green lint, Protoplasma 117 (1983) 196–205.

[41]

L.Y. Yatsu, K.E. Espelie, P.E. Kolattukudy, Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized, Plant Physiol. 73 (1983) 521–524.

[42]

A. Schmutz, A.J. Buchala, U. Ryser, Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases, Plant Physiol. 110 (1996) 403–411.

[43]

S. Sun, X.P. Xiong, Q. Zhu, Y.J. Li, J. Sun, Transcriptome sequencing and metabolome analysis reveal genes involved in pigmentation of green-colored cotton fibers, Int. J. Mol. Sci. 20 (2019) 4838.

The Crop Journal
Pages 777-784
Cite this article:
Liu D, Liu X, Su Y, et al. Genetic mapping and identification of Lgf loci controlling green fuzz in Upland cotton (Gossypium hirsutum L.). The Crop Journal, 2021, 9(4): 777-784. https://doi.org/10.1016/j.cj.2020.09.009

268

Views

4

Downloads

7

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 27 February 2020
Revised: 09 July 2020
Accepted: 02 November 2020
Published: 25 November 2020
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return