AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Synergistic and antagonistic interactions between potassium and magnesium in higher plants

Kailiu Xiea,bIsmail CakmakcShiyu WangaFusuo Zhangd,eShiwei Guoa,d( )
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
Show Author Information

Abstract

Magnesium (Mg) affects various critical physiological and biochemical processes in higher plants, and its deficiency impedes plant growth and development. Although potassium (K)-induced Mg deficiency in agricultural production is widespread, the specific relationship of K with Mg and especially its competitive nature is poorly understood. This review summarizes current knowledge on the interactions between K and Mg with respect to their root uptake, root-to-shoot translocation and distribution in plants. Their synergistic effects on certain physiological functions are also described. The antagonistic effect of K on Mg is stronger than that of Mg on K in root absorption and transport within plants, indicating that the balanced use of K and Mg fertilizers is necessary for sustaining high plant-available Mg and alleviating K-induced Mg deficiency, especially in plant species with high K demand or in high-available-K soil. The relationship between Mg and K in plant tissues may be antagonistic or synergistic depending on plant species, cell type, leaf age, source- and sink organs. There are synergistic effects of K and Mg on photosynthesis, carbohydrate transport and allocation, nitrogen metabolism, and turgor regulation. Definition of optimal K/Mg ratios for soils and plant tissues is desirable for maintaining proper nutritional status in plants, leading to a physiological state supporting crop production. Future research should concentrate on identifying the physiological and molecular mechanisms underlying the interactions between K and Mg in a given physiological function.

References

[1]

O. Shaul, Magnesium transport and function in plants: the tip of the iceberg, Biometals 15 (2002) 307-321.

[2]

I. Cakmak, C. Hengeler, H. Marschner, Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency, J. Exp. Bot. 45 (1994) 1245-1250.

[3]

I. Cakmak, C. Hengeler, H. Marschner, Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants, J. Exp. Bot. 45 (1994) 1251-1257.

[4]

C. Hermans, G.N. Johnson, R.J. Strasser, N. Verbruggen, Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems Ⅰ and Ⅱ, Planta 220 (2004) 344-355.

[5]

N. Farhat, A. Elkhouni, W. Zorrig, A. Smaoui, C. Abdelly, M. Rabhi, Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning, Acta Physiol. Plant. 38 (2016) 145.

[6]
H. Marschner, Marschner’s Mineral Nutrition of Higher Plants, Academic Press, London, UK, 2012.
[7]

Y. Ceylan, U.B. Kutman, M. Mengutay, I. Cakmak, Magnesium applications to growth medium and foliage affect the starch distribution, increase the grain size and improve the seed germination in wheat, Plant Soil 406 (2016) 145-156.

[8]

W.T. Peng, L.D. Zhang, Z. Zhou, C. Fu, Z.C. Chen, H. Liao, Magnesium promotes root nodulation through facilitation of carbohydrate allocation in soybean, Physiol. Plant. 163 (2018) 372-385.

[9]

H. Marschner, I. Cakmak, High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean (Phaseolus vulgaris) plants, J. Plant Physiol. 134 (1989) 308-315.

[10]

W. Guo, H. Nazim, Z. Liang, D. Yang, Magnesium deficiency in plants: an urgent problem, Crop J. 4 (2016) 83-91.

[11]

A. Gransee, H. Führs, Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions, Plant Soil 368 (2013) 5-21.

[12]

M. Senbayram, A. Gransee, V. Wahle, H. Thiel, Role of magnesium fertilisers in agriculture: plant–soil continuum, Crop Pasture Sci. 66 (2015) 1219.

[13]

I.P.D. Oliveira, C.J. Asher, D.G. Edwards, R.S.M.D. Santos, Magnesium sulphate and the development of the common bean cultivated in an Ultisol of Northeast Australia, Sci. Agric. 57 (2000) 153-157.

[14]

F. Pol, B. Traore, Soil nutrient depletion by agricultural production in Southern Mali, Fertilizer Res. 36 (1993) 79-90.

[15]
R.N. Roy, A. Finck, G. Blair, H. Tandon, Plant Nutrition for Food Security: a Guide for Integrated Nutrient Management, FAO Fertilizer and Plant Nutrition Bulletin 16, FAO, Rome, Italy, 2006.
[16]

Z. Rengel, Role of calcium in aluminium toxicity, New Phytol. 121 (1992) 499-513.

[17]

A. Kunhikrishnan, R. Thangarajan, N. Bolan, Y. Xu, S. Mandal, D. Gleeson, B. Seshadri, M. Zaman, L. Barton, C. Tang, Functional relationships of soil acidification, liming, and greenhouse gas flux, Adv. Agron. 139 (2016) 1-71.

[18]

K.W. Juang, Y.I. Lee, H.Y. Lai, B.C. Chen, Influence of magnesium on copper phytotoxicity to and accumulation and translocation in grapevines, Ecotoxicol. Environ. Saf. 104 (2014) 36-42.

[19]

C. Hermans, J. Chen, F. Coppens, D. Inzé, N. Verbruggen, Low magnesium status in plants enhances tolerance to cadmium exposure, New Phytol. 192 (2) (2011) 428-436.

[20]

N.S. Bolan, D.C. Adriano, D. Curtin, Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability, Adv. Agron. 78 (2003) 215-272.

[21]

J.E. Holland, A.E. Bennett, A.C. Newton, P.J. White, B.M. McKenzie, T.S. George, R.J. Pakeman, J.S. Bailey, D.A. Fornara, R.C. Hayes, Liming impacts on soils, crops and biodiversity in the UK: A review, Sci. Total Environ. 610-611 (2018) 316-332.

[22]

V. Römheld, E.A. Kirkby, Magnesium functions in crop nutrition and yield, Nawozy I Nawozenie (Fertilisers and Fertilization) 34 (2009) 163-182.

[23]

A.R. Dechen, Q.A.C. Carmello, F.A. Monteiro, R.C. Nogueirol, Role of magnesium in food production: an overview, Crop Pasture Sci. 66 (2015) 1213.

[24]

A.R. Kumar, N. Kumar, M. Kavino, Role of potassium in fruit crops-a review, Agric. Rev. 27 (2006) 284-291.

[25]

R. Rhodes, N. Miles, J.C. Hughes, Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa, Field Crops Research 223 (2018) 1-11.

[26]

B. Yan, T. Zhou, H.M. Wang, Z.J. Chen, J.Y. Cao, S.M. Liu, J.B. Zhou, The relationships between magnesium deficiency of tomato and cation balances in solar greenhouse soil, Sci. Agric. Sin. 49 (2016) 3588-3596.

[27]

S. Chen, Z. Yan, Q. Chen, Estimating the potential to reduce potassium surplus in intensive vegetable fields of China, Nutr. Cycl. Agroecosyst. 107 (2017) 265-277.

[28]

J. Gerendás, H. Führs, The significance of magnesium for crop quality, Plant Soil 368 (2013) 101-128.

[29]

N.K. Fageria, Ionic interactions in rice plants from dilute solutions, Plant Soil 70 (1983) 309-316.

[30]

Y. Ding, C. Chang, W. Luo, Y. Wu, X. Ren, P. Wang, G. Xu, High potassium aggravates the oxidative stress inducedy by magnesium deflciency in rice leaves, Pedosphere 18 (2008) 316-327.

[31]

J.H. Huang, J. Xu, X. Ye, T.Y. Luo, L.H. Ren, G.C. Fan, Y.P. Qi, Q. Li, R.S. Ferrarezi, L.S. Chen, Magnesium deficiency affects secondary lignification of the vascular system in Citrus sinensis seedlings, Trees 33 (2019) 171-182.

[32]

T. Ogura, N.I. Kobayashi, H. Suzuki, R. Iwata, T.M. Nakanishi, K. Tanoi, Magnesium uptake characteristics in Arabidopsis revealed by 28Mg tracer studies, Planta 248 (2018) 745-750.

[33]

S.R. Wilkinson, R.M. Welch, H.F. Mayland, D.L. Grunes, Magnesium in plants: uptake, distribution, function and utilization by man and animals, Met. Ions Biol. Syst. 26 (1990) 33-56.

[34]

B. Seggewiss, A. Jungk, Influence of potassium dynamics at the soil-root interface on magnesium uptake of plants, J. Plant Nutr. Soil Sci. 151 (2010) 91-96 (in German with English abstract).

[35]

W. Deng, K. Luo, D. Li, X. Zheng, X. Wei, W. Smith, C. Thammina, L. Lu, Y. Li, Y. Pei, Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance, J. Exp. Bot. 57 (2006) 4235-4243.

[36]

U.E. Grauer, W.J. Horst, Modeling cation amelioration of aluminum phytotoxicity, Soil Sci. Soc. Am. J. 56 (1) (1992) 166-172.

[37]

Y. Wang, W. Wu, Potassium transport and signaling in higher plants, Annu. Rev. Plant Biol. 64 (2013) 451-476.

[38]

T. Horie, D.E. Brodsky, A. Costa, T. Kaneko, F. Lo Schiavo, M. Katsuhara, J.I. Schroeder, K+ Transport by the OsHKT2;4 Transporter from Rice with Atypical Na+ Transport Properties and Competition in Permeation of K+ over Mg2+ and Ca2+ Ions, Plant Physiol. 156 (2011) 1493-1507.

[39]

N. Kobayashi, K. Tanoi, Critical issues in the study of magnesium transport systems and magnesium deficiency symptoms in plants, IJMS 16 (2015) 23076-23093.

[40]

Z.C. Chen, N. Yamaji, R. Motoyama, Y. Nagamura, J.F. Ma, Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice, Plant Physiol. 159 (2012) 1624-1633.

[41]

D. Mao, J. Chen, L. Tian, Z. Liu, L. Yang, R. Tang, J. Li, C. Lu, Y. Yang, J. Shi, L. Chen, D. Li, S. Luan, Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation, Plant Cell 26 (2014) 2234-2248.

[42]

S. Shabala, Y. Hariadi, Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll, Planta 221 (2005) 56-65.

[43]

K.M. Guo, O. Babourina, D.A. Christopher, T. Borsic, Z. Rengel, The cyclic nucleotide-gated channel AtCNGC10 transports Ca2+ and Mg2+ in Arabidopsis, Physiol. Plant. 139 (2010) 303-312.

[44]

X. Li, T. Borsics, H.M. Harrington, D.A. Christopher, Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli, Functional Plant Biol. 32 (2005) 643.

[45]

C. Hermans, S.J. Conn, J. Chen, Q. Xiao, N. Verbruggen, An update on magnesium homeostasis mechanisms in plants, Metallomics 5 (2013) 1170.

[46]

J. Cai, L.u. Chen, H. Qu, J. Lian, W. Liu, Y. Hu, G. Xu, Alteration of nutrient allocation and transporter genes expression in rice under N, P, K, and Mg deficiencies, Acta Physiol Plant 34 (2012) 939-946.

[47]

A. Maillard, P. Etienne, S. Diquélou, J. Trouverie, V. Billard, J.C. Yvin, A. Ourry, Nutrient deficiencies modify the ionomic composition of plant tissues: a focus on cross–talk between molybdenum and other nutrients in Brassica napus, J. Exp. Bot. 67 (2016) 5631-5641.

[48]

Y. Ding, W. Luo, G. Xu, Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice, Ann. Appl. Biol. 149 (2006) 111-123.

[49]

N. Farhat, M. Rabhi, H. Falleh, K. Lengliz, A. Smaoui, C. Abdelly, M. Lachaâl, N. Karray-Bouraoui, Interactive effects of excessive potassium and Mg deficiency on safflower, Acta Physiol. Plant. 35 (2013) 2737-2745.

[50]

B. Lasa, S. Frechilla, M. Aleu, B. González-Moro, C. Lamsfus, P.M. Aparicio-Tejo, Effects of low and high levels of magnesium on the response of sunflower plants grown with ammonium and nitrate, Plant Soil 225 (2000) 167-174.

[51]

X. Ye, X.F. Chen, C.L. Deng, L.T. Yang, N.W. Lai, J.X. Guo, L.S. Chen, Magnesium-deficiency effects on pigments, photosynthesis and photosynthetic electron transport of leaves, and nutrients of leaf blades and veins in Citrus sinensis seedlings, Plants 8 (2019) 389.

[52]

K. Tomasz, G. Anna, K. Włodzimierz, Effect of magnesium nutrition of onion (Allium cepa L.). Part Ⅰ. yielding and nutrient status, Ecol. Chem. Eng. S 19 (2012) 97-105.

[53]

H. He, X. Jin, H. Ma, Y. Deng, J. Huang, L. Yin, Changes of plant biomass partitioning, tissue nutrients and carbohydrates status in magnesium-deficient banana seedlings and remedy potential by foliar application of magnesium, Sci. Hortic. 268 (2020) 109377.

[54]

K. Scharrer, J. Jung, Der Einfluß der Ernährung auf das Verhältnis von Kationen zu Anionen in der Pflanze, Z. Pflanzenernaehr. Dueng. Bodenk. 71 (1) (1955) 76-94.

[55]

M. Jezek, C.M. Geilfus, A. Bayer, K.H. Mühling, Photosynthetic capacity, nutrient status, and growth of maize (Zea mays L.) upon MgSO4 leaf–application, Front. Plant Sci. 5 (2015) 781.

[56]

K.G. de Lima Dias, P.T. Gontijo Guimaraes, A.E. Furtini Neto, H.R. Oliveira de Silveira, J.J. de Jesus Lacerda, Effect of magnesium on gas exchange and photosynthetic efficiency of coffee plants grown under different light levels, Agriculture 7 (2017) 85.

[57]

D.L. Karlen, R. Ellis, D.A. Whitney, D.L. Grunes, Influence of soil moisture and plant cultivar on cation uptake by wheat with respect to grass tetany, Agron. J. 70 (1978) 918-921.

[58]

T. Ohno, D.L. Grunes, Potassium-magnesium interactions affecting nutrient uptake by wheat forage, Soil Sci. Soc. Am. J. 49 (1985) 685-690.

[59]

H. Li, Z. Chen, T. Zhou, Y. Liu, S. Raza, J. Zhou, Effects of high potassium and low temperature on the growth and magnesium nutrition of different tomato cultivars, Hort. Sci. 53 (2018) 710-714.

[60]

O.J. Sun, T.W. Payn, Magnesium nutrition and photosynthesis in Pinus radiata: clonal variation and influence of potassium, Tree Physiol. 19 (1999) 535-540.

[61]

A.J. Karley, P.J. White, Moving cationic minerals to edible tissues: potassium, magnesium, calcium, Curr. Opin. Plant Biol. 12 (2009) 291-298.

[62]

J. Tromp, J. Vuure, Accumulation of calcium, potassium and magnesium in apple fruits under various conditions of humidity, Physiol. Plant. 89 (1993) 149-156.

[63]

F. Gaymard, G. Pilot, B. Lacombe, D. Bouchez, D. Bruneau, J. Boucherez, N. Michaux-Ferrière, J.B. Thibaud, H. Sentenac, Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap, Cell 94 (1998) 647-655.

[64]

R. Ródenas, M.F. García-Legaz, E. López-Gómez, V. Martínez, F. Rubio, M. Ángeles Botella, NO3, PO43− and SO42− deprivation reduced LKT1-mediated low-affinity K+ uptake and SKOR-mediated K+ translocation in tomato and Arabidopsis plants, Physiol. Plant. 160 (2017) 410-424.

[65]

Z.C. Chen, W.T. Peng, J. Li, H. Liao, Functional dissection and transport mechanism of magnesium in plants, Semin. Cell Dev. Biol. 74 (2018) 142-152.

[66]

M. Koch, M. Busse, M. Naumann, B. Jákli, I. Smit, I. Cakmak, C. Hermans, E. Pawelzik, Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants, Physiol. Plant. 166 (2019) 921-935.

[67]

C. Shen, X. Shi, C. Xie, Y. Li, H. Yang, X. Mei, Y. Xu, C. Dong, The change in microstructure of petioles and peduncles and transporter gene expression by potassium influences the distribution of nutrients and sugars in pear leaves and fruit, J. Plant Physiol. 232 (2019) 320-333.

[68]

I. Cakmak, E.A. Kirkby, Role of magnesium in carbon partitioning and alleviating photooxidative damage, Physiol. Plant. 133 (2008) 692-704.

[69]

M. Tränkner, E. Tavakol, B. Jákli, Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection, Physiol. Plant. 163 (2018) 414-431.

[70]

B. Diem, D.L. Godbold, Potassium, calcium and magnesium antagonism in clones of Populus trichocarpa, Plant Soil 155-156 (1993) 411-414.

[71]

T. Ogura, N.I. Kobayashi, C. Hermans, Y. Ichihashi, A. Shibata, K. Shirasu, N. Aoki, R. Sugita, T. Ogawa, H. Suzuki, R. Iwata, T.M. Nakanishi, K. Tanoi, Short-term magnesium deficiency triggers nutrient retranslocation in Arabidopsis thaliana, Front. Plant Sci. 11 (2020) 563.

[72]

J. Ruan, L. Ma, Y. Yang, Magnesium nutrition on accumulation and transport of amino acids in tea plants, J. Sci. Food Agric. 92 (2012) 1375-1383.

[73]

S.J. Conn, V. Conn, S.D. Tyerman, B.N. Kaiser, R.A. Leigh, M. Gilliham, Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles, New Phytol. 190 (2011) 583-594.

[74]

R. Brooks, Serpentine and its Vegetation: a Multidisciplinary Approach, Diocorides Press, Portland, USA, 1987.

[75]

S. Conn, M. Gilliham, Comparative physiology of elemental distributions in plants, Ann. Bot. 105 (2010) 1081-1102.

[76]

B.M. Waters, Moving magnesium in plant cells: commentary, New Phytol. 190 (2011) 510-513.

[77]

I. Cakmak, The role of potassium in alleviating detrimental effects of abiotic stresses in plants, J. Plant Nutr. Soil Sci. 168 (2005) 521-530.

[78]

C. Zörb, M. Senbayram, E. Peiter, Potassium in agriculture – status and perspectives, J. Plant Physiol. 171 (2014) 656-669.

[79]

B. Jákli, E. Tavakol, M. Tränkner, M. Senbayram, K. Dittert, Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency, J. Plant Physiol. 209 (2017) 20-30.

[80]

K. Xie, Z. Lu, Y. Pan, L. Gao, P. Hu, M. Wang, S. Guo, Leaf photosynthesis is mediated by the coordination of nitrogen and potassium: the importance of anatomical-determined mesophyll conductance to CO2 and carboxylation capacity, Plant Sci. 290 (2020) 110267.

[81]

P. Battie-Laclau, J.P. Laclau, C. Beri, L. Mietton, M.R.A. Muniz, B.C. Arenque, M. De Cassia Piccolo, L. Jordan-Meille, J.P. Bouillet, Y. Nouvellon, Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment, Plant Cell Environ. 37 (2014) 70-81.

[82]

W. Hu, J. Yang, Y. Meng, Y. Wang, B. Chen, W. Zhao, D.M. Oosterhuis, Z. Zhou, Potassium application affects carbohydrate metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll and its relationship with boll biomass, Field Crops Res. 179 (2015) 120-131.

[83]

C. Hermans, F. Bourgis, M. Faucher, R.J. Strasser, S. Delrot, N. Verbruggen, Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves, Planta 220 (2005) 541-549.

[84]

E. Gerardeaux, E. Saur, J. Constantin, A. Porté, L. Jordan-Meille, Effect of carbon assimilation on dry weight production and partitioning during vegetative growth, Plant Soil 324 (2009) 329-343.

[85]

D. Epron, O.M.R. Cabral, J.-P. Laclau, M. Dannoura, A.P. Packer, C. Plain, P. Battie-Laclau, M.Z. Moreira, P.C.O. Trivelin, J.-P. Bouillet, D. Gérant, Y. Nouvellon, P. Millard, In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon, Tree Physiol. 36 (1) (2016) 6-21.

[86]

P. Gajdanowicz, E. Michard, M. Sandmann, M. Rocha, L.G.G. Correa, S.J. Ramirez-Aguilar, J.L. Gomez-Porras, W. Gonzalez, J.-B. Thibaud, J.T. van Dongen, I. Dreyer, Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 864-869.

[87]

S. Hanstein, X. Wang, X. Qian, P. Friedhoff, A. Fatima, Y. Shan, K.e. Feng, S. Schubert, Changes in cytosolic Mg2+ levels can regulate the activity of the plasma membrane H+-ATPase in maize, Biochem. J. 435 (2011) 93-101.

[88]

W. Grzebisz, Crop response to magnesium fertilization as affected by nitrogen supply, Plant Soil 368 (2013) 23-39.

[89]

D. Coskun, D.T. Britto, H.J. Kronzucker, The nitrogen-potassium intersection: membranes, metabolism, and mechanism, Plant, Cell Environ. 40 (2017) 2029-2041.

[90]

N. Yang, J. Jiang, H. Xie, M. Bai, Q. Xu, X. Wang, X. Yu, Z. Chen, Y. Guan, Metabolomics reveals distinct carbon and nitrogen metabolic responses to magnesium deficiency in leaves and roots of soybean [Glycine max (Linn.) Merr.], Front. Plant Sci. 8 (2017) 2091.

[91]

D.G. Blevins, N.M. Barnett, W.B. Frost, Role of potassium and malate in nitrate uptake and translocation by wheat seedlings, Plant Physiol. 62 (1978) 784-788.

[92]

P. Armengaud, R. Sulpice, A.J. Miller, M. Stitt, A. Amtmann, Y. Gibon, Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots, Plant Physiol. 150 (2009) 772-785.

[93]

W.T. Peng, W.L. Qi, M.M. Nie, Y.B. Xiao, H. Liao, Z.C. Chen, Magnesium supports nitrogen uptake through regulating NRT2.1/2.2 in soybean, Plant Soil 457 (2020) 97-111.

[94]
D.G. Blevins, Role of potassium in protein metabolism in plants, in: R.D. Munson (Ed), Potassium in Agriculture, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, USA, 1985, pp. 413–424.
[95]

W.T. Pettigrew, Potassium influences on yield and quality production for maize, wheat, soybean and cotton, Physiol. Plant. 133 (2008) 670-681.

[96]

C.P. Li, Y.P. Qi, J. Zhang, L.T. Yang, D.H. Wang, X. Ye, N.W. Lai, L.L. Tan, D. Lin, L.S. Chen, Magnesium-deficiency-induced alterations of gas exchange, major metabolites and key enzymes differ among roots, and lower and upper leaves of Citrus sinensis seedlings, Tree Physiol. 37 (11) (2017) 1564-1581.

[97]

H. Ertiftik, M. Zengin, Response of maize for grain to potassium and magnesium fertilizers in soils with high lime contents, J. Plant Nutr. 40 (1) (2017) 93-103.

[98]

M. Zengin, F. Goekmen, S. Gezgin, I. Cakmak, Effects of different fertilizers with potassium and magnesium on the yield and quality of potato, Asian J. Chem. 20 (2008) 663-676.

[99]

J. Poberezny, E. Wszelaczynska, Effect of bioelements (N, K, Mg) and long-term storage of potato tubers on quantitative and qualitative losses Part Ⅱ. Content of dry matter and starch, J. Elem. 16 (2011) 237-246.

[100]

S. Suchartgul, S. Maneepong, M. Issarakraisila, Fertilization of rubber growing farmers in chumphon, surat thani, and nakhon Si thammarat provinces, Rubber Thai J. 1 (2012) 19-31.

[101]

R. Jokinen, The magnesium status of Finnish mineral soils and the requirement of the magnesium supply, Magnesium-Bulletin 3 (1a) (1981) 1-5.

The Crop Journal
Pages 249-256
Cite this article:
Xie K, Cakmak I, Wang S, et al. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal, 2021, 9(2): 249-256. https://doi.org/10.1016/j.cj.2020.10.005

419

Views

7

Downloads

147

Crossref

N/A

Web of Science

147

Scopus

2

CSCD

Altmetrics

Received: 11 March 2020
Revised: 27 September 2020
Accepted: 03 November 2020
Published: 25 November 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return