AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

A natural allele of TAW1 contributes to high grain number and grain yield in rice

Hua Yuana,1Zhengyan Xua,1Xueqin Tana,1Peng GaoaMengya JinaWencheng SongaShiguang WangbYunhai KangaPeixiong LiuaBin TuaYuping WangaPeng QinaShigui LiaBingtian Maa( )Weilan Chena( )
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Grain number per panicle (GNP) is a complex trait controlled by quantitative trait loci (QTL), directly determining grain yield in rice. Identifying GNP-associated QTL is desirable for increasing rice yield. A rice chromosome segment substitution line (CSSL), F771, which showed increased panicle length and GNP, was identified in a set of CSSLs derived from a cross between two indica cultivars, R498 (recipient) and WY11327 (donor). Genetic analysis showed that the panicle traits in F771 were semidominant and controlled by multiple QTL. Six QTL were consistently identified by QTL-seq analysis. Among them, the major QTL qPLN10 for panicle length and GNP was localized to a 121-kb interval between markers N802 and N909 on chromosome 10. Based on quantitative real-time PCR and sequence analysis, TAWAWA1 (TAW1), a known regulator of rice inflorescence architecture, was identified as the candidate gene for qPLN10. A near-isogenic line, NIL-TAW1, was developed to evaluate its effects. In comparison with the recurrent parent R498, NIL-TAW1 showed increased panicle length (14.0%), number of secondary branches (20.9%) and GNP (22.0%), and the final grain yield per plant of NIL-TAW1 was increased by 18.6%. Transgenic experiments showed that an appropriate expression level of TAW1 was necessary for panicle development. Haplotype analysis suggested that the favorable F771-type (Hap 13) of TAW1 was introduced from aus accessions and had great potential value in high-yield breeding both in indica and japonica varieties. Our results provide a promising genetic resource for rice grain yield improvement.

References

[1]

Y. Xing, Q. Zhang, Genetic and molecular bases of rice yield, Annu. Rev. Plant Biol. 61 (2010) 421–442.

[2]

J. Zuo, J. Li, Molecular genetic dissection of quantitative trait loci regulating rice grain size, Annu. Rev. Genet. 48 (2014) 99–118.

[3]

X. Bai, H. Zhao, Y. Huang, W. Xie, Z. Han, B. Zhang, Z. Guo, L. Yang, H. Dong, W. Xue, G. Li, G. Hu, Y. Hu, Y. Xing, Genome-wide association analysis reveals different genetic control in panicle architecture between indica and japonica rice, Plant Genome 9 (2016), https://doi.org/10.3835/plantgenome2015.11.0115.

[4]

H. Tabuchi, Y. Zhang, S. Hattori, M. Omae, S. Shimizu-Sato, T. Oikawa, Q. Qian, M. Nishimura, H. Kitano, H. Xie, X. Fang, H. Yoshida, J. Kyozuka, F. Chen, Y. Sato, LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems, Plant Cell 23 (2011) 3276–3287.

[5]

K. Komatsu, M. Maekawa, S. Ujiie, Y. Satake, I. Furutani, H. Okamoto, K. Shimamoto, J. Kyozuka, LAX and SPA: major regulators of shoot branching in rice, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 11765–11770.

[6]

T. Oikawa, J. Kyozuka, Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice, Plant Cell 21 (2009) 1095–1108.

[7]

X. Huang, Q. Qian, Z. Liu, H. Sun, S. He, D. Luo, G. Xia, C. Chu, J. Li, X. Fu, Natural variation at the DEP1 locus enhances grain yield in rice, Nat. Genet. 41 (2009) 494–497.

[8]

F. Li, W. Liu, J. Tang, J. Chen, H. Tong, B. Hu, C. Li, J. Fang, M. Chen, C. Chu, Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation, Cell Res. 20 (2010) 838–849.

[9]

Y. Qiao, R. Piao, J. Shi, S.I. Lee, W. Jiang, B.K. Kim, J. Lee, L. Han, W. Ma, H.J. Koh, Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.), Theor. Appl. Genet. 122 (2011) 1439–1449.

[10]

S. Li, Q. Qian, Z. Fu, D. Zeng, X. Meng, J. Kyozuka, M. Maekawa, X. Zhu, J. Zhang, J. Li, Y. Wang, Short panicle1 encodes a putative PTR family transporter and determines rice panicle size, Plant J. 58 (2009) 592–605.

[11]

Y. Huang, X. Bai, M. Luo, Y. Xing, Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice, J. Integr. Plant Biol. 61 (2019) 987–999.

[12]

M. Ashikari, H. Sakakibara, S. Lin, T. Yamamoto, T. Takashi, A. Nishimura, E.R. Angeles, Q. Qian, H. Kitano, M. Matsuoka, Cytokinin oxidase regulates rice grain production, Science 309 (2005) 741–745.

[13]

M. Li, D. Tang, K. Wang, X. Wu, L. Lu, H. Yu, M. Gu, C. Yan, Z. Cheng, Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice, Plant Biotechnol. J. 9 (2011) 1002–1013.

[14]

S. Li, B. Zhao, D. Yuan, M. Duan, Q. Qian, L. Tang, B. Wang, X. Liu, J. Zhang, J. Wang, J. Sun, Z. Liu, Y.Q. Feng, L. Yuan, C. Li, Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 3167–3172.

[15]

D. Fujita, K.R. Trijatmiko, A.G. Tagle, M.V. Sapasap, Y. Koide, K. Sasaki, N. Tsakirpaloglou, R.B. Gannaban, T. Nishimura, S. Yanagihara, Y. Fukuta, T. Koshiba, I.H. Slamet-Loedin, T. Ishimaru, N. Kobayashi, NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 20431–20436.

[16]

G.H. Zhang, S.Y. Li, L. Wang, W.J. Ye, D.L. Zeng, Y.C. Rao, Y.L. Peng, J. Hu, Y.L. Yang, J. Xu, D.Y. Ren, Z.Y. Gao, L. Zhu, G.J. Dong, X.M. Hu, M.X. Yan, L.B. Guo, C.Y. Li, Q. Qian, LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93–11, Mol. Plant 7 (2014) 1350–1364.

[17]

F. Gao, K. Wang, Y. Liu, Y. Chen, P. Chen, Z. Shi, J. Luo, D. Jiang, F. Fan, Y. Zhu, S. Li, Blocking miR396 increases rice yield by shaping inflorescence architecture, Nat. Plants 2 (2015) 15196.

[18]

Y. Wu, Y. Wang, X.F. Mi, J.X. Shan, X.M. Li, J.L. Xu, H.X. Lin, The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems, PLoS Genet. 12 (2016) e1006386.

[19]

X. Huo, S. Wu, Z. Zhu, F. Liu, Y. Fu, H. Cai, X. Sun, P. Gu, D. Xie, L. Tan, C. Sun, NOG1 increases grain production in rice, Nat. Commun. 8 (2017) 1497.

[20]

X. Bai, Y. Huang, Y. Hu, H. Liu, B. Zhang, C. Smaczniak, G. Hu, Z. Han, Y. Xing, Duplication of an upstream silencer of FZP increases grain yield in rice, Nat. Plants 3 (2017) 885–893.

[21]

S.S. Wang, C.L. Chung, K.Y. Chen, R.K. Chen, A novel variation in the FRIZZLE PANICLE (FZP) gene promoter improves grain number and yield in rice, Genetics 215 (2020) 243–252.

[22]

X. Bai, Y. Huang, D. Mao, M. Wen, L. Zhang, Y. Xing, Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice, Sci. Rep. 6 (2016) 19022.

[23]

Y. Jiao, Y. Wang, D. Xue, J. Wang, M. Yan, G. Liu, G. Dong, D. Zeng, Z. Lu, X. Zhu, Q. Qian, J. Li, Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice, Nat. Genet. 42 (2010) 541–544.

[24]

L. Zhang, H. Yu, B. Ma, G. Liu, J. Wang, J. Wang, R. Gao, J. Li, J. Liu, J. Xu, Y. Zhang, Q. Li, X. Huang, J. Xu, J. Li, Q. Qian, B. Han, Z. He, J. Li, A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice, Nat. Commun. 8 (2017) 14789.

[25]

K. Miura, M. Ikeda, A. Matsubara, X.J. Song, M. Ito, K. Asano, M. Matsuoka, H. Kitano, M. Ashikari, OsSPL14 promotes panicle branching and higher grain productivity in rice, Nat. Genet. 42 (2010) 545–549.

[26]

J. Shen, J. Liu, K. Xie, F. Xing, F. Xiong, J. Xiao, X. Li, L. Xiong, Translational repression by a miniature inverted-repeat transposable element in the 3' untranslated region, Nat. Commun. 8 (2017) 14651.

[27]

W. Xue, Y. Xing, X. Weng, Y. Zhao, W. Tang, L. Wang, H. Zhou, S. Yu, C. Xu, X. Li, Q. Zhang, Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice, Nat. Genet. 40 (2008) 761–767.

[28]

W. Yan, H. Liu, X. Zhou, Q. Li, J. Zhang, L. Lu, T. Liu, H. Liu, C. Zhang, Z. Zhang, G. Shen, W. Yao, H. Chen, S. Yu, W. Xie, Y. Xing, Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice, Cell Res. 23 (2013) 969–971.

[29]

T. Liu, H. Liu, H. Zhang, Y. Xing, Validation and characterization of Ghd7.1, a major quantitative trait locus with pleiotropic effects on spikelets per panicle, plant height, and heading date in rice (Oryza sativa L.), J. Integr. Plant Biol. 55 (2013) 917–927.

[30]

W.H. Yan, P. Wang, H.X. Chen, H.J. Zhou, Q.P. Li, C.R. Wang, Z.H. Ding, Y.S. Zhang, S.B. Yu, Y.Z. Xing, Q.F. Zhang, A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice, Mol. Plant 4 (2011) 319–330.

[31]

X. Wei, J. Xu, H. Guo, L. Jiang, S. Chen, C. Yu, Z. Zhou, P. Hu, H. Zhai, J. Wan, DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously, Plant Physiol. 153 (2010) 1747–1758.

[32]

D. Ren, H. Yu, Y. Rao, Q. Xu, T. Zhou, J. Hu, Y. Zhang, G. Zhang, L. Zhu, Z. Gao, G. Chen, L. Guo, D. Zeng, Q. Qian, ‘Two-floret spikelet’ as a novel resource has the potential to increase rice yield, Plant Biotechnol. J. 16 (2018) 351–353.

[33]

T. Zhang, Y. Li, L. Ma, X. Sang, Y. Ling, Y. Wang, P. Yu, H. Zhuang, J. Huang, N. Wang, F. Zhao, C. Zhang, Z. Yang, L. Fang, G. He, LATERAL FLORET 1 induced the three-florets spikelet in rice, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 9984–9989.

[34]

D. Ren, Y. Li, G. He, Q. Qian, Multifloret spikelet improves rice yield, New Phytol. 225 (2020) 2301–2306.

[35]

D. Ren, Q. Xu, Z. Qiu, Y. Cui, T. Zhou, D. Zeng, L. Guo, Q. Qian, FON4 prevents the multi-floret spikelet in rice, Plant Biotechnol. J. 17 (2019) 1007–1009.

[36]

A. Yoshida, M. Sasao, N. Yasuno, K. Takagi, Y. Daimon, R. Chen, R. Yamazaki, H. Tokunaga, Y. Kitaguchi, Y. Sato, Y. Nagamura, T. Ushijima, T. Kumamaru, S. Iida, M. Maekawa, J. Kyozuka, TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 767–772.

[37]

H. Yuan, S. Fan, J. Huang, S. Zhan, S. Wang, P. Gao, W. Chen, B. Tu, B. Ma, Y. Wang, P. Qin, S. Li, 08SG2/OsBAK1 regulates grain size and number, and functions differently in indica and japonica backgrounds in rice, Rice 10 (2017) 25.

[38]

H. Takagi, A. Abe, K. Yoshida, S. Kosugi, S. Natsume, C. Mitsuoka, A. Uemura, H. Utsushi, M. Tamiru, S. Takuno, H. Innan, L.M. Cano, S. Kamoun, R. Terauchi, QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations, Plant J. 74 (2013) 174–183.

[39]

A. Abe, S. Kosugi, K. Yoshida, S. Natsume, H. Takagi, H. Kanzaki, H. Matsumura, K. Yoshida, C. Mitsuoka, M. Tamiru, H. Innan, L. Cano, S. Kamoun, R. Terauchi, Genome sequencing reveals agronomically important loci in rice using MutMap, Nat. Biotechnol. 30 (2012) 174–178.

[40]

A. Fukushima, H. Ohta, N. Yokogami, N. Tsuda, A. Yoshida, J. Kyozuka, M. Maekawa, Effects of genes increasing the number of spikelets per panicle, TAW1 and APO1, on yield and yield-related traits in rice, Plant. Prod. Sci. 20 (2017) 485–489.

[41]

L. Wang, Q. Zhang, Boosting rice yield by fine-tuning spl gene expression, Trends Plant Sci. 22 (2017) 643–646.

[42]

H. Yuan, P. Qin, L. Hu, S. Zhan, S. Wang, P. Gao, J. Li, M. Jin, Z. Xu, Q. Gao, A. Du, B. Tu, W. Chen, B. Ma, Y. Wang, S. Li, OsSPL18 controls grain weight and grain number in rice, J. Genet. Genomics 46 (2019) 41–51.

[43]

Z. Zhang, X. Sun, X. Ma, B. Xu, Z. Li, GNP6, a novel allele of MOC1, regulates panicle and tiller development in rice, Crop J. 9 (2021) 57-67, https://doi.org/10.1016/j.cj.2020.04.011.

[44]

N. Fang, R. Xu, L. Huang, B. Zhang, P. Duan, N. Li, Y. Luo, Y. Li, SMALL GRAIN 11 controls grain size, grain number and grain yield in rice, Rice 9 (2016) 64.

[45]

Y. Xu, Q. Lin, X. Li, F. Wang, Z. Chen, J. Wang, W. Li, F. Fan, Y. Tao, Y. Jiang, X. Wei, R. Zhang, Q.H. Zhu, Q. Bu, J. Yang, C. Gao, Fine-tuning the amylose content of rice by precise base editing of the Wx gene, Plant Biotechnol. J. 19 (2021) 11–13.

[46]

L. Huang, Q. Li, C. Zhang, R. Chu, Z. Gu, H. Tan, D. Zhao, X. Fan, Q. Liu, Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system, Plant Biotechnol. J. 18 (2020) 2164–2166.

[47]

D. Zeng, T. Liu, X. Ma, B. Wang, Z. Zheng, Y. Zhang, X. Xie, B. Yang, Z. Zhao, Q. Zhu, Y.G. Liu, Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice, Plant Biotechnol. J. 18 (2020) 2385–2387.

[48]

W. Nan, S. Shi, D.C. Jeewani, L. Quan, X. Shi, Z. Wang, Genome-wide identification and characterization of wALOG family genes involved in branch meristem development of branching head wheat, Genes 9 (2018) 510.

[49]

M.O. Olatoye, S.R. Marla, Z. Hu, S. Bouchet, R. Perumal, G.P. Morris, Dissecting adaptive traits with nested association mapping: genetic architecture of inflorescence morphology in sorghum, G3-Genes Genomes Genet. 10 (2020) 1785–1796.

The Crop Journal
Pages 1060-1069
Cite this article:
Yuan H, Xu Z, Tan X, et al. A natural allele of TAW1 contributes to high grain number and grain yield in rice. The Crop Journal, 2021, 9(5): 1060-1069. https://doi.org/10.1016/j.cj.2020.11.004

345

Views

3

Downloads

7

Crossref

7

Web of Science

7

Scopus

2

CSCD

Altmetrics

Received: 07 September 2020
Revised: 16 October 2020
Accepted: 28 December 2020
Published: 09 January 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return