AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Heterogeneous expression of Osa-MIR156bc increases abiotic stress resistance and forage quality of alfalfa

Kexin WangaYanrong Liua,cFengkui TengaHuifang CenaJianpin YanaShiwen LinaDayong LidWanjun Zhanga,b( )
College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
Key Lab of Grassland Science in Beijing, China Agricultural University, Beijing 100193, China
College of Biological Science, China Agricultural University, Beijing 100193, China
College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
Show Author Information

Abstract

Alfalfa (Medicago sativa L.) is the most widely cultivated perennial leguminous forage crop woldwide. MicroRNA156 (miR156) precursor genes from dicotyledonous species are reportedly useful for improving alfalfa plant architecture and abiotic stress resistance. However, there has been no report on whether a miR156 precursor gene from a monocotyledonous species functions in alfalfa. We introduced two tandem precursor genes of miR156, rice Osa-MIR156b and Osa-MIR156c (Osa-MIR156bc), into alfalfa. The expression of miR156 in the transgenic (TG) alfalfa was significantly elevated. Compared to wild-type plants, the TG plants overexpressing miR156 had more branches and leaves and showed improved salt and drought tolerance. Overexpression of miR156 slightly reduced plant height, but the biomass yield of TG plants grown in flowerpots was still increased. Forage quality of TG plants was markedly improved by reduction of acid detergent lignin (ADL) content and increase in crude protein content. The expression of the putative miR156 target genes MsSPL6, MsSPL12, and MsSPL13 in TG plants was repressed by miR156 overexpression, and that of all tested MsSPLs would be sharply increased under drought or salt stress. RNA sequencing revealed that overexpression of miR156 affected the expression of genes associated with abiotic stress resistance and plant development in multiple pathways. This first report of overexpression of monocot miR156 precursors in alfalfa sheds light on the function of miRNA156 precursors from the monocot species rice that could be used for genetic improvement of the dicot forage crop alfalfa.

References

[1]

B. Aung, M.Y. Gruber, L. Amyot, K. Omari, A. Bertrand, A. Hannoufa, Ectopic expression of LjmiR156 delays flowering, enhances shoot branching, and improves forage quality in alfalfa, Plant Biotechnol. Rep. 9 (2015) 379–393.

[2]

B. Aung, M.Y. Gruber, A. Hannoufa, The MicroRNA156 system: a tool in plant biotechnology, Biocatal. Agric. Biotechnol. 4 (2015) 432–442.

[3]

Y.L. Gao, R.C. Long, J.M. Kang, Z. Wang, T.J. Zhang, H. Sun, X. Li, Q.C. Yang, Comparative proteomic analysis reveals that antioxidant system and soluble sugar metabolism contribute to salt tolerance in alfalfa (Medicago sativa L.) leaves, J. Proteome Res. 18 (2019) 191–205.

[4]

C.X. Fu, R. Sunkar, C.E. Zhou, H. Shen, J.Y. Zhang, J. Matts, J. Wolf, D.G.J. Mann, C.N. Stewart, Y.H. Tang, Z.Y. Wang, Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production, Plant Biotechnol. J. 10 (2012) 443–452.

[5]

S.H. Wani, V. Kumar, T. Khare, R. Guddimalli, M. Parveda, K. Solymosi, P. Suprasanna, P.B. Kavi Kishor, Engineering salinity tolerance in plants: progress and prospects, Planta 251 (2020) 76–104.

[6]

Y.R. Liu, K.X. Wang, D.Y. Li, J.P. Yan, W.J. Zhang, Enhanced cold tolerance and tillering in switchgrass (Panicum virgatum L.) by heterologous expression of Osa-miR393a, Plant Cell Physiol. 58 (2017) 2226–2240.

[7]

Y.R. Liu, D.Y. Li, J.P. Yan, K.X. Wang, H. Luo, W.J. Zhang, MiR319-mediated ethylene biosynthesis, signaling and salt stress response in switchgrass, Plant Biotechnol. J. 17 (2019) 2370–2383.

[8]

Y.R. Liu, J.P. Yan, K.X. Wang, D.Y. Li, Y.J. Han, W.J. Zhang, Heteroexpression of Osa-miR319b improved switchgrass biomass yield and feedstock quality by repression of PvPCF5, Biotechnol. Biofuels 13 (2020) 56.

[9]

C.H. Barrera-Rojas, G. Rocha, L. Polverari, B.D. Pinheiro, D.S. Batista, M.M. Notini, C.A. Da, E. Morea, S. Sabatini, W.C. Otoni, F. Nogueira, miR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived de novo shoot regeneration via cytokinin responses, J. Exp. Bot. 71 (2020) 934–950.

[10]

J.P. Fouracre, V.J. Chen, R.S. Poethig, ALTERED MERISTEM PROGRAM1 regulates leaf identity independently of miR156-mediated translational repression, Development 147 (2020) dev186874.

[11]

X.F. Yang, J. Wang, Z.Y. Dai, X.L. Zhao, X.X. Miao, Z.Y. Shi, miR156f integrates panicle architecture through genetic modulation of branch number and pedicel length pathways, Rice 12 (2019) 40–50.

[12]

Z.Y. Dai, J. Wang, X.F. Yang, H. Lu, X.X. Miao, Z.Y. Shi, Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice, J. Exp. Bot. 69 (2018) 5117–5130.

[13]

K.B. Xie, C.Q. Wu, L.Z. Xiong, Genomic organization, differential expression, and interaction of SQUAMOSA Promoter-Binding-Like transcription factors and microRNA156 in rice, Plant Physiol. 142 (2006) 280–293.

[14]

M. Arshad, B.A. Feyissa, L. Amyot, B. Aung, A. Hannoufa, MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13, Plant Sci. 258 (2017) 122–136.

[15]

M. Arshad, M.Y. Gruber, A. Hannoufa, Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress, Sci. Rep. 8 (2018) 9363–9375.

[16]

M. Arshad, M.Y. Gruber, K. Wall, A. Hannoufa, An insight into microRNA156 role in salinity stress responses of alfalfa, Front. Plant Sci. 8 (2017) 356–370.

[17]

C. Matthews, M. Arshad, A. Hannoufa, Alfalfa response to heat stress is modulated by microRNA156, Physiol. Plant. 165 (2019) 830–842.

[18]

L.G. Cui, J.X. Shan, M. Shi, J.P. Gao, H.X. Lin, The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants, Plant J. 80 (2014) 1108–1117.

[19]

C.B. Miao, Z. Wang, L. Zhang, J.J. Yao, K. Hua, X. Liu, H.Z. Shi, J.K. Zhu, The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice, Nat. Commun. 10 (2019) 3822–3833.

[20]

G.F.F.E. Silva, E.M. Silva, M. Da Silva Azevedo, M.A.C. Guivin, D.A. Ramiro, C.R. Figueiredo, H. Carrer, L.E.P. Peres, F.T.S. Nogueira, microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development, Plant J. 78 (2014) 604–618.

[21]

X.H. Zhang, Z. Zou, J.H. Zhang, Y.Y. Zhang, Q.Q. Han, T.X. Hu, X.G. Xu, H. Liu, H.X. Li, Z.B. Ye, Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant, FEBS Lett. 585 (2011) 435–439.

[22]

Y.R. Liu, H.F. Cen, J.P. Yan, Y.W. Zhang, W.J. Zhang, Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars, Plant Cell Rep. 34 (2015) 1099–1108.

[23]

W.J. Zhang, T. Wang, Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation, Plant Sci. 234 (2015) 110–118.

[24]

Y.F. Gao, Z. Zhu, G.F. Xiao, Y. Zhu, Q. Wu, X.H. Li, Isolation of soybean kunitz trysin inhibitor gene and its application in plant insect-resistant genetic engineering, Europe PMC 40 (1998) 405–411.

[25]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods 25 (2001) 402–408.

[26]

Z.Y. Li, R.C. Long, T.J. Zhang, Q.C. Yang, J.M. Kang, Molecular cloning and characterization of the MsHSP17.7 gene from Medicago sativa L., Mol. Biol. Rep. 43 (2016) 815–826.

[27]

M. Dubois, K. Gilles, J.K. Hamilton, P.A. Rebers, F. Simith, A colorimetric method for the determination of sugars, Nature 168 (1951) 167–167.

[28]

H.F. Cen, W.Y. Ye, Y.R. Liu, D.Y. Li, K.X. Wang, W.J. Zhang, Overexpression of a chimeric gene, OsDST-SRDX, improved salt tolerance of perennial ryegrass, Sci. Rep. 6 (2016) 27320.

[29]

X.B. Dai, P.X. Zhao, psRNATarget: a plant small RNA target analysis server, Nucleic Acids Res. 39 (2011) 155–159.

[30]
A. Aiyar, The use of CLUSTAL W and CLUSTAL X for multiple sequencealignment, In: S. Misener, S.A. Krawetz (Eds), Bioinformatics Methods andProtocols. Methods in Molecular Biology, Vol. 132. Humana Press, Totowa, NJ, USA, 2000, pp. 221–241.
[31]

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28 (2011) 2731–2739.

[32]

C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D.R. Kelley, H. Pimentel, S.L. Salzberg, J.L. Rinn, L. Pachter, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nat. Protoc. 7 (2012) 562–578.

[33]

K.B. Singh, R.C. Foley, L. Oñate-Sánchez, Transcription factors in plant defense and stress responses, Curr. Opin. Plant Biol. 5 (2002) 430–436.

[34]

A.K. Bao, B.Q. Du, L. Touil, P. Kang, Q.L. Wang, S.M. Wang, Co-expression of tonoplast Cation/H+ antiporter and H+-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions, Plant Biol. J. 14 (2016) 964–975.

[35]

J. Mizoi, K. Shinozaki, K. Yamaguchi-Shinozaki, AP2/ERF family transcription factors in plant abiotic stress responses, Biochim. Biophys. Acta 2012 (1819) 86–96.

[36]

Y.Q. Jiang, M.K. Deyholos, Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses, Plant Mol. Biol. 69 (2009) 91–105.

[37]

L. Li, W.G. Zheng, Y.B. Zhua, H.X. Yea, B. Tanga, Z.W. Arendseea, D. Jonesa, R. Lia, D. Ortizc, X.F. Zhao, C. Due, D. Nettletone, M.P. Scottc, M.G. Salas-Fernandezc, Y. Yina, E.S. Wurtele, QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 14734–14739.

[38]

B. Donald, Protein synthesis in plants, Annu. Rev. Plant. Physiol. 21 (1970) 91–114.

[39]
A.M. Szweykowska, Hormonal control of protein synthesis in plants, in: S.S.Purohit (Eds), Hormonal Regulation of Plant Growth and Development, Advances in Agricultural Biotechnology, Vol. 21, Springer, Dordrecht, theNetherlands, 1987.
[40]

L. Li, C.M. Foster, Q.L. Gan, D. Nettleton, M.G. James, A.M. Myers, E.S. Wurtele, Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves, Plant J. 58 (2009) 485–498.

[41]

C.R. Johnson, R.J. Millwood, Y.H. Tang, J.Q. Gou, R.W. Sykes, G.B. Turner, M.F. Davis, Y. Sang, Z.Y. Wang,, Field-grown miR156 transgenic switchgrass reproduction, yield, global gene expression analysis, and bioconfinement, Biotechnol. Biofuels 10 (2017) 255.

[42]

S. Bhogale, A.S. Mahajan, B. Natarajan, M. Rajabhoj, H.V. Thulasiram, A.K. Banerjee, MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. Andigena, Plant Physiol. 164 (2014) 1011–1027.

[43]

K.B. Xie, J.Q. Shen, X. Hou, J.L. Yao, X.H. Li, J.H. Xiao, L.Z. Xiong, Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice, Plant Physiol. 158 (2012) 1382–1394.

[44]

Z.Y. Wu, Y.P. Cao, R.J. Yang, T.X. Qi, Y.Q. Hang, H. Lin, G.K. Zhou, Z.Y. Wang, C.X. Fu, Switchgrass SBP-box transcription factors PvSPL1 and 2 function redundantly to initiate side tillers and affect biomass yield of energy crop, Biotechnol. Biofuels 9 (2016) 101–115.

[45]

X.Y. Li, Q. Qian, Z.M. Fu, Y.H. Wang, G.S. Xiong, D.L. Zeng, X.Q. Wang, X.F. Liu, S. Teng, F. Hiroshi, M. Yuan, D. Luo, B. Han, J.Y. Li, Control of tillering in rice, Nature 422 (2003) 618–621.

[46]
O.K. Atkin, A.H. Millar, P. Gardeström, D.A. Day, Photosynthesis, carbohydrate metabolism and respiration in leaves of higher plants, photosynthesis: physiology and metabolism, in: R.C. Leegood, T.D.Sharkey, S. von Caemmerer (Eds), Photosynthesis. Advances inPhotosynthesis and Respiration, Vol. 9, Springer, Dordrecht, theNetherlands, 2000, pp. 153–175.
[47]

P.C. Nautiyal, K. Rajgopal, P.V. Zala, D.S. Pujari, M. Basu, B.A. Dhadhal, B.M. Nandre, Evaluation of wild Arachis species for abiotic stress tolerance: I. Thermal stress and leaf water relations, Euphytica 159 (2007) 43–57.

[48]

N. Terry, A. Ulrich, Effects of magnesium deficiency on the photosynthesis and respiration of leaves of sugar beet, Plant Physiol. 54 (1974) 379–381.

[49]

C. Deák, K. Jäger, A. Fábián, V. Nagy, Z. Albert, A. Miskó, B. Barnabás, I. Papp, Investigation of physiological responses and leaf morphological traits of wheat genotypes with contrasting drought stress tolerance, Acta Biol. Szeged. 55 (2011) 69–71.

[50]

H.H. Shao, S.D. Chen, K. Zhang, Q.H. Cao, H. Zhou, Q.Q. Ma, B. He, X.H. Yuan, Y. Wang, Y.H. Chen, B. Yong, Isolation and expression studies of the ERD15 gene involved in drought-stressed responses, Genet. Mol. Res. 13 (2014) 10852–10862.

[51]

B.A. Feyissa, M. Arshad, M.Y. Gruber, S.E. Kohalmi, A. Hannoufa, The interplay between miR156/SPL13 and DFR/WD40-1 regulate drought tolerance in alfalfa, BMC Plant Biol. 19 (2019) 434–453.

[52]

T.T. Chen, Q.C. Yang, M. Gruber, J.M. Kang, Y. Sun, W. Ding, T.J. Zhang, X.Q. Zhang, Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity, Mol. Biol. Rep. 39 (2012) 6067–6075.

[53]

R.M. Gao, R.S. Austin, L. Amyot, A. Hannoufa, Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa, BMC Genomics 17 (2016) 658–673.

[54]

L. Cui, F.Y. Zheng, J.F. Wang, C.L. Zhang, F.M. Xiao, J. Ye, C.X. Li, Z.B. Ye, J.H. Zhang, miR156a-targeted SBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato, Plant Biotechnol. J. 18 (2020) 1670–1682.

The Crop Journal
Pages 1135-1144
Cite this article:
Wang K, Liu Y, Teng F, et al. Heterogeneous expression of Osa-MIR156bc increases abiotic stress resistance and forage quality of alfalfa. The Crop Journal, 2021, 9(5): 1135-1144. https://doi.org/10.1016/j.cj.2020.11.009

303

Views

3

Downloads

22

Crossref

22

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 13 August 2020
Revised: 12 October 2020
Accepted: 28 December 2020
Published: 12 January 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return