AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

BSA-seq-based identification of a major additive plant height QTL with an effect equivalent to that of Semi-dwarf 1 in a large rice F2 population

Bo ZhangaFeixiang QiaGang HuaYikai YangaLi ZhangaJianghu MengaZhongmin HanaXiangchun ZhouaHaiyang Liua,bMohammed Ayaada,cYongzhong Xinga( )
National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, Hubei, China
Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434100, Hubei, China
Plant Research Department, Nuclear Research Center, Atomic Energy Authority, Abo-Zaabal 13759, Egypt
Show Author Information

Abstract

Bulked-segregant analysis is a time- and cost-saving strategy for identifying major quantitative trait loci (QTL) in a mapping population. Bulked-segregant analysis combined with whole-genome sequencing (BSA-seq) was performed to rapidly identify QTL for heading date, plant height, and panicle length in a large F2 population derived from two landraces: Chuan 7 (C7) and Haoboka (HBK). Twenty plants with extremely low or high phenotypic values for the target traits were selected from an F2 population of 940 plants to construct low- and high-value bulks. Three pairs of bulks for the three traits were constructed, resulting in six DNA pools. BSA-seq revealed nine QTL: four for heading date, three for plant height, and two for panicle length. These QTL were validated in a random F2 population or BC4F2 populations. The major novel plant height QTL, qPH8, acting additively with an effect equivalent to that of semi-dwarf 1 (sd1), is potentially valuable for hybrid rice breeding. qPH8 controls mainly the elongation of basal internodes. The C7 allele of qPH8 reduces plant height and increases lodging resistance without yield penalty, suggesting a potential role for qPH8 in improving rice plant architecture.

References

[1]

R.A. Wing, M.D. Purugganan, Q. Zhang, The rice genome revolution: from an ancient grain to Green Super Rice, Nat. Rev. Genet. 19 (2018) 505–517.

[2]

Q. Zhang, Strategies for developing green super rice, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 16402–16409.

[3]

Y. Rao, Y. Li, Q. Qian, Recent progress on molecular breeding of rice in China, Plant Cell Rep. 33 (2014) 551–564.

[4]

Z. Cui, H. Zhang, X. Chen, C. Zhang, W. Ma, C. Huang, W. Zhang, G. Mi, Y. Miao, X. Li, Q. Gao, J. Yang, Z. Wang, Y. Ye, S. Guo, J. Lu, J. Huang, S. Lv, Y. Sun, Y. Liu, X. Peng, J. Ren, S. Li, X. Deng, X. Shi, Q. Zhang, Z. Yang, L. Tang, C. Wei, L. Jia, J. Zhang, M. He, Y. Tong, Q. Tang, X. Zhong, Z. Liu, N. Cao, C. Kou, H. Ying, Y. Yin, X. Jiao, Q. Zhang, M. Fan, R. Jiang, F. Zhang, Z. Dou, Pursuing sustainable productivity with millions of smallholder farmers, Nature 555 (2018) 363–366.

[5]

C. Zou, P. Wang, Y. Xu, Bulked sample analysis in genetics, genomics and crop improvement, Plant Biotechnol. J. 14 (2016) 1941–1955.

[6]

J.J. Giovannoni, R.A. Wing, M.W. Ganal, S.D. Tanksley, Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations, Nucleic Acids Res. 19 (1991) 6553–6558.

[7]

R.W. Michelmore, I. Paran, R.V. Kesseli, Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations, Proc. Natl. Acad. Sci. U. S. A. 88 (1991) 9828–9832.

[8]

Q. Zhang, B.Z. Shen, X.K. Dai, M.H. Mei, M.A. Saghai Maroof, Z.B. Li, Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice, Proc. Natl. Acad. Sci. U. S. A. 91 (1994) 8675–8679.

[9]

L. Monna, A. Miyao, H.S. Zhong, T. Sasaki, Y. Minobe, Screening of RAPD markers linked to the photoperiod-sensitivity gene in rice chromosome 6 using bulked segregant analysis, DNA Res. 2 (1995) 101–106.

[10]

G. Zhang, E.R. Angeles, M.L. Abenes, G.S. Khush, N. Huang, RAPD and RFLP mapping of the bacterial blight resistance gene xa-13 in rice, Theor. Appl. Genet. 93 (1996) 65–70.

[11]

X. Huang, X. Wei, T. Sang, Q. Zhao, Q. Feng, Y. Zhao, C. Li, C. Zhu, T. Lu, Z. Zhang, M. Li, D. Fan, Y. Guo, A. Wang, L. Wang, L. Deng, W. Li, Y. Lu, Q. Weng, K. Liu, T. Huang, T. Zhou, Y. Jing, W. Li, Z. Lin, E.S. Buckler, Q. Qian, Q.F. Zhang, J. Li, B. Han, Genome-wide association studies of 14 agronomic traits in rice landraces, Nat. Genet. 42 (2010) 961–967.

[12]

W. Chen, Y. Gao, W. Xie, L. Gong, K. Lu, W. Wang, Y. Li, X. Liu, H. Zhang, H. Dong, W. Zhang, L. Zhang, S. Yu, G. Wang, X. Lian, J. Luo, Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat. Genet. 46 (2014) 714–721.

[13]

K. Yano, E. Yamamoto, K. Aya, H. Takeuchi, P.C. Lo, L. Hu, M. Yamasaki, S. Yoshida, H. Kitano, K. Hirano, M. Matsuoka, Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice, Nat. Genet. 48 (2016) 927–934.

[14]

H. Takagi, A. Abe, K. Yoshida, S. Kosugi, S. Natsume, C. Mitsuoka, A. Uemura, H. Utsushi, M. Tamiru, S. Takuno, H. Innan, L.M. Cano, S. Kamoun, R. Terauchi, QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations, Plant J. 74 (2013) 174–183.

[15]

A. Deokar, M. Sagi, K. Daba, B. Tar'an, QTL sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea, Plant Biotechnol. J. 17 (2019) 275–288.

[16]

R.H. Ramirez-Gonzalez, V. Segovia, N. Bird, P. Fenwick, S. Holdgate, S. Berry, P. Jack, M. Caccamo, C. Uauy, RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat, Plant Biotechnol. J. 13 (2015) 613–624.

[17]

P. Huang, H. Jiang, C. Zhu, K. Barry, J. Jenkins, L. Sandor, J. Schmutz, M.S. Box, E.A. Kellogg, T.P. Brutnell, Sparse panicle1 is required for inflorescence development in Setaria viridis and maize, Nat. Plants 3 (2017) 17054.

[18]

W.A. Zegeye, Y. Zhang, L. Cao, S. Cheng, Whole genome resequencing from bulked populations as a rapid QTL and gene identification method in rice, Int. J. Mol. Sci. 19 (2018) 4000.

[19]

B.N. Mansfeld, R. Grumet, QTLseqr: an R package for bulk segregant analysis with Next-Generation Sequencing, Plant Genome 11 (2018) 3835.

[20]

R. Shrestha, J. Gómez-Ariza, V. Brambilla, F. Fornara, Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals, Ann. Bot. 114 (2014) 1445–1458.

[21]

K. Hori, K. Matsubara, M. Yano, Genetic control of flowering time in rice: integration of Mendelian genetics and genomics, Theor. Appl. Genet. 129 (12) (2016) 2241–2252.

[22]

W. Xue, Y. Xing, X. Weng, Y. Zhao, W. Tang, L. Wang, H. Zhou, S. Yu, C. Xu, X. Li, Q. Zhang, Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice, Nat. Genet. 40 (2008) 761–767.

[23]

X. Wei, J. Xu, H. Guo, L. Jiang, S. Chen, C. Yu, Z. Zhou, P. Hu, H. Zhai, J. Wan, DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously, Plant Physiol. 153 (2010) 1747–1758.

[24]

W.H. Yan, P. Wang, H.X. Chen, H.J. Zhou, Q.P. Li, C.R. Wang, Z.H. Ding, Y.S. Zhang, S.B. Yu, Y.Z. Xing, Q.F. Zhang, A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice, Mol. Plant 4 (2011) 319–330.

[25]

B.H. Koo, S.C. Yoo, J.W. Park, C.T. Kwon, B.D. Lee, G. An, Z. Zhang, J. Li, Z. Li, N.C. Paek, Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes, Mol. Plant 6 (2013) 1877–1888.

[26]

W. Yan, H. Liu, X. Zhou, Q. Li, J. Zhang, L. Lu, T. Liu, H. Liu, C. Zhang, Z. Zhang, G. Shen, W. Yao, H. Chen, S. Yu, W. Xie, Y. Xing, Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice, Cell Res. 23 (2013) 969–971.

[27]

K. Hori, E. Ogiso-Tanaka, K. Matsubara, U. Yamanouchi, K. Ebana, M. Yano, Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response, Plant J. 76 (2013) 36–46.

[28]

J. Zhang, X. Zhou, W. Yan, Z. Zhang, L. Lu, Z. Han, H. Zhao, H. Liu, P. Song, Y. Hu, G. Shen, Q. He, S. Guo, G. Gao, G. Wang, Y. Xing, Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice, New Phytol. 208 (2015) 1056–1066.

[29]

B. Zhang, H. Liu, F. Qi, Z. Zhang, Q. Li, Z. Han, Y. Xing, Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice, Rice 12 (2019) 48.

[30]

D. Zeng, Z. Tian, Y. Rao, G. Dong, Y. Yang, L. Huang, Y. Leng, J. Xu, C. Sun, G. Zhang, J. Hu, L. Zhu, Z. Gao, X. Hu, L. Guo, G. Xiong, Y. Wang, J. Li, Q. Qian, Rational design of high-yield and superior-quality rice, Nat. Plants 3 (2017) 17031.

[31]

X. Zhou, G. Jiang, L. Yang, L. Qiu, P. He, C. Nong, Y. Wang, Y. He, Y. Xing, Gene diagnosis and targeted breeding for blast-resistant Kongyu 131 without changing regional adaptability, J. Genet. Genomics 45 (2018) 539–547.

[32]

Y. Hu, S. Li, Y. Xing, Lessons from natural variations: artificially induced heading date variations for improvement of regional adaptation in rice, Theor. Appl. Genet. 132 (2019) 383–394.

[33]

Y. Leng, Y. Gao, L. Chen, Y. Yang, L. Huang, L. Dai, D. Ren, Q. Xu, Y. Zhang, K. Ponce, J. Hu, L. Shen, G. Zhang, G. Chen, G. Dong, Z. Gao, L. Guo, G. Ye, Q. Qian, L. Zhu, D. Zeng, Using Heading date 1 preponderant alleles from indica cultivars to breed high-yield, high-quality japonica rice varieties for cultivation in south China, Plant Biotechnol. J. 18 (2020) 119–128.

[34]

F. Liu, P. Wang, X. Zhang, X. Li, X. Yan, D. Fu, G. Wu, The genetic and molecular basis of crop height based on a rice model, Planta 247 (2018) 1–26.

[35]

W. Spielmeyer, M.H. Ellis, P.M. Chandler, Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 9043–9048.

[36]

K. Asano, T. Takashi, K. Miura, Q. Qian, H. Kitano, M. Matsuoka, M. Ashikari, Genetic and molecular analysis of utility of sd1 alleles in rice breeding, Breed. Sci. 57 (2007) 53–58.

[37]

S. Li, Q. Qian, Z. Fu, D. Zeng, X. Meng, J. Kyozuka, M. Maekawa, X. Zhu, J. Zhang, J. Li, Y. Wang, Short panicle1 encodes a putative PTR family transporter and determines rice panicle size, Plant J. 58 (2009) 592–605.

[38]

W. Huang, G. Bai, J. Wang, W. Zhu, Q. Zeng, K. Lu, S. Sun, Z. Fang, Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice, Front. Plant Sci. 9 (2018) 300.

[39]

M. Komatsu, M. Maekawa, K. Shimamoto, J. Kyozuka, The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development, Dev. Biol. 231 (2001) 364–373.

[40]

Y. Huang, X. Bai, M. Luo, Y. Xing, Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice, J. Integr. Plant Biol. 61 (2019) 987–999.

[41]

P. Sun, W. Zhang, Y. Wang, Q. He, F. Shu, H. Liu, J. Wang, J. Wang, L. Yuan, H. Deng, OsGRF4 controls grain shape, panicle length and seed shattering in rice, J. Integr. Plant Biol. 58 (2016) 836–847.

[42]

W. Yang, Z. Guo, C. Huang, L. Duan, G. Chen, N. Jiang, W. Fang, H. Feng, W. Xie, X. Lian, G. Wang, Q. Luo, Q. Zhang, Q. Liu, L. Xiong, Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice, Nat. Commun. 5 (2014) 5087.

[43]

T. Ookawa, K. Ishihara, Genetic characteristics of the breaking strength of the basal culm related to lodging resistance in a cross between Koshihikari and Chugoku 117, J. Crop Sci. 66 (1997) 603–609.

[44]

M.G. Murray, W.F. Thompson, Rapid isolation of high molecular weight plant DNA, Nucleic Acids. Res. 8 (1980) 4321–4325.

[45]

W. Hu, T. Zhou, P. Wang, B. Wang, J. Song, Z. Han, L. Chen, K. Liu, Y. Xing, Development of whole-genome agarose-resolvable LInDel markers in rice, Rice 13 (2020) 1.

[46]

A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics 30 (2014) 2114–2120.

[47]

H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics 25 (2009) 1754–1760.

[48]

Y. Kawahara, M. de la Bastide, J.P. Hamilton, H. Kanamori, W.R. McCombie, S. Ouyang, D.C. Schwartz, T. Tanaka, J. Wu, S. Zhou, K.L. Childs, R.M. Davidson, H. Lin, L. Quesada-Ocampo, B. Vaillancourt, H. Sakai, S.S. Lee, J. Kim, H. Numa, T. Itoh, C.R. Buell, T. Matsumoto, Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data, Rice 6 (2013) 4.

[49]

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, The Sequence Alignment/Map format and SAMtools, Bioinformatics 25 (2009) 2078–2079.

[50]

A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M.A. DePristo, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res. 20 (2010) 1297–1303.

[51]

G.A. Van der Auwera, M.O. Carneiro, C. Hartl, R. Poplin, G. Del Angel, A. Levy-Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, E. Banks, K.V. Garimella, D. Altshuler, S. Gabriel, M.A. DePristo, From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline, Curr. Protoc. Bioinformatics 43 (2013) 11.10.1–11.10.33.

[52]

A. Shimada, M. Ueguchi-Tanaka, T. Sakamoto, S. Fujioka, S. Takatsuto, S. Yoshida, T. Sazuka, M. Ashikari, M. Matsuoka, The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis, Plant J. 48 (2006) 390–402.

[53]

J.S. Jeon, S. Jang, S. Lee, J. Nam, C. Kim, S.H. Lee, Y.Y. Chung, S.R. Kim, Y.H. Lee, Y.G. Cho, G. An, leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development, Plant Cell 12 (2000) 871–884.

[54]

R. Komiya, A. Ikegami, S. Tamaki, S. Yokoi, K. Shimamoto, Hd3a and RFT1 are essential for flowering in rice, Development 135 (2008) 767–774.

[55]

K. Doi, T. Izawa, T. Fuse, U. Yamanouchi, T. Kubo, Z. Shimatani, M. Yano, A. Yoshimura, Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1, Genes Dev. 18 (2004) 926–936.

[56]

A. Sasaki, M. Ashikari, M. Ueguchi-Tanaka, H. Itoh, A. Nishimura, D. Swapan, K. Ishiyama, T. Saito, M. Kobayashi, G.S. Khush, H. Kitano, M. Matsuoka, Green revolution: a mutant gibberellin-synthesis gene in rice, Nature 416 (2002) 701–702.

[57]

K. Yano, Y. Morinaka, F. Wang, P. Huang, S. Takehara, T. Hirai, A. Ito, E. Koketsu, M. Kawamura, K. Kotake, S. Yoshida, M. Endo, G. Tamiya, H. Kitano, M. Ueguchi-Tanaka, K. Hirano, M. Matsuoka, GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 21262–21267.

[58]

K. Asano, M. Yamasaki, S. Takuno, K. Miura, S. Katagiri, T. Ito, K. Doi, J. Wu, K. Ebana, T. Matsumoto, H. Innan, H. Kitano, M. Ashikari, M. Matsuoka, Artificial selection for a green revolution gene during japonica rice domestication, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 11034–11039.

[59]

Q. Liu, R. Han, K. Wu, J. Zhang, Y. Ye, S. Wang, J. Chen, Y. Pan, Q. Li, X. Xu, J. Zhou, D. Tao, Y. Wu, X. Fu, G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice, Nat. Commun. 9 (2018) 852.

[60]

Y. Takahashi, K.M. Teshima, S. Yokoi, H. Innan, K. Shimamoto, Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 4555–4560.

[61]

E. Ogiso-Tanaka, K. Matsubara, S.I. Yamamoto, Y. Nonoue, J. Wu, H. Fujisawa, H. Ishikubo, T. Tanaka, T. Ando, T. Matsumoto, M. Yano, T. Zhang, Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice, PLoS ONE 8 (2013) e75959.

[62]

Z. Yang, D. Huang, W. Tang, Y. Zheng, K. Liang, A.J. Cutler, W. Wu, R. Wu, Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes, PLoS ONE 8 (2013) e68433.

[63]

C. Wang, S. Tang, Q. Zhan, Q. Hou, Y. Zhao, Q. Zhao, Q. Feng, C. Zhou, D. Lyu, L. Cui, Y. Li, J. Miao, C. Zhu, Y. Lu, Y. Wang, Z. Wang, J. Zhu, Y. Shangguan, J. Gong, S. Yang, W. Wang, J. Zhang, H. Xie, X. Huang, B. Han, Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy, Nat. Commun. 10 (2019) 2982.

[64]

H. Zhang, X. Wang, Q. Pan, P. Li, Y. Liu, X. Lu, W. Zhong, M. Li, L. Han, J. Li, P. Wang, D. Li, Y. Liu, Q. Li, F. Yang, Y.M. Zhang, G. Wang, L. Li, QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples, Mol. Plant 12 (2019) 426–437.

[65]

G. Kadambari, L.R. Vemireddy, A. Srividhya, R. Nagireddy, S.S. Jena, M. Gandikota, S. Patil, R. Veeraghattapu, D.A.K. Deborah, G.E. Reddy, M. Shake, A. Dasari, P.V. Ramanarao, C.V. Durgarani, C.N. Neeraja, E.A. Siddiq, M. Sheshumadhav, QTL-Seq-based genetic analysis identifies a major genomic region governing dwarfness in rice (Oryza sativa L.), Plant Cell Rep. 37 (2018) 677–687.

The Crop Journal
Pages 1428-1437
Cite this article:
Zhang B, Qi F, Hu G, et al. BSA-seq-based identification of a major additive plant height QTL with an effect equivalent to that of Semi-dwarf 1 in a large rice F2 population. The Crop Journal, 2021, 9(6): 1428-1437. https://doi.org/10.1016/j.cj.2020.11.011

217

Views

3

Downloads

16

Crossref

13

Web of Science

14

Scopus

3

CSCD

Altmetrics

Received: 24 August 2020
Revised: 17 November 2020
Accepted: 28 December 2020
Published: 26 January 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return