AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Wheat leaf senescence and its regulatory gene network

Nigarin SultanaShahidul IslamAngela JuhaszWujun Ma( )
State Agriculture Biotechnology Centre, Murdoch University, Perth, WA 6150, Australia
Show Author Information

Abstract

Wheat leaf senescence is a developmental process that involves expressional changes in thousands of genes that ultimately impact grain protein content (GPC), grain yield (GY), and nitrogen use efficiency. The onset and rate of senescence are strongly influenced by plant hormones and environmental factors e.g. nitrogen availability. At maturity, decrease in nitrogen uptake could enhance N remobilization from leaves and stem to grain, eventually leading to leaf senescence. Early senescence is related to high GPC and somewhat low yield whereas late senescence is often related to high yield and somewhat low GPC. Early or late senescence is principally regulated by up and down-regulation of senescence associated genes. Integration of external and internal factors together with genotypic variation influence senescence associated genes in a developmental age dependent manner. Although regulation of genes involved in senescence has been studied in rice, Arabidopsis, maize, and currently in wheat, there are genotype-specific variations yet to explore. A major effort is needed to understand the interaction of positive and negative senescence regulators in determining the onset of senescence. In wheat, increasing attention has been paid to understand the role of positive senescence regulator, e.g. GPC-1, regulated gene network during early senescence time course. Recently, gene regulatory network involved early to late senescence time course revealed important senescence regulators. However, the known negative senescence regulator TaNAC-S gene has not been extensively studied in wheat and little is known about its value in breeding. Existing data on senescence-related transcriptome studies and gene regulatory network could effectively be used for functional study in developing nitrogen efficient wheat varieties.

References

[1]

Z. Šramková, E. Gregová, E. Šturdík, Genetic improvement of wheat-a review, Nova Biotechnol. 9 (2009) 27–51.

[2]

J. Dvorak, M.C. Luo, Z.L. Yang, H.B. Zhang, The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat, Theor. Appl. Genet. 97 (1998) 657–670.

[3]

C. le Mouël, A. Forslund, How can we feed the world in 2050? A review of the responses from global scenario studies, Eur. Rev. Agric. Econ. 44 (2017) 541–591.

[4]

E. Himelblau, R.M. Amasino, Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence, J. Plant Physiol. 158 (2001) 1317–1323.

[5]

O. Gaju, V. Allard, P. Martre, J. Le Gouis, D. Moreau, M. Bogard, S. Hubbart, M.J. Foulkes, Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars, Field Crops Res. 155 (2014) 213–223.

[6]

A.M. Fischer, The complex regulation of senescence, Crit. Rev. Plant Sci. 31 (2012) 124–147.

[7]

E. Breeze, E. Harrison, S. McHattie, L. Hughes, R. Hickman, C. Hill, S. Kiddle, Y.S. Kim, C.A. Penfold, D. Jenkins, High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation, Plant Cell 23 (2011) 873–894.

[8]

P. Borrill, S.A. Harrington, J. Simmonds, C. Uauy, Identification of transcription factors regulating senescence in wheat through gene regulatory network modelling, Plant Physiol. 180 (2019) 1740–1755.

[9]

S. Gan, Mitotic and postmitotic senescence in plants, Sci. Aging Knowledge Environ. 38 (2003) 7.

[10]

P.O. Lim, H.R. Woo, H.G. Nam, Molecular genetics of leaf senescence in Arabidopsis, Trends Plant Sci. 8 (2003) 272–278.

[11]

H.R. Woo, H.J. Kim, H.G. Nam, P.O. Lim, Plant leaf senescence and death-regulation by multiple layers of control and implications for aging in general, J. Cell Sci. 126 (2013) 4823–4833.

[12]

H.G. Nam, The molecular genetic analysis of leaf senescence, Curr. Opin. Biotechnol. 8 (1997) 200–207.

[13]

P.O. Lim, H.G. Nam, 2 The molecular and genetic control of leaf senescence and longevity in Arabidopsis, Curr. Topics Dev. Biol. 67 (2005) 50–85.

[14]

T. Ischebeck, A.M. Zbierzak, M. Kanwischer, P. Dörmann, A salvage pathway for phytol metabolism in Arabidopsis, J. Biol. Chem. 281 (2006) 2470–2477.

[15]

J.B. Harris, H.J. Arnott, Effects of senescence on chloroplasts of the tobacco leaf, Tissue Cell 5 (1973) 527–544.

[16]

A. Girondé, P. Etienne, J. Trouverie, A. Bouchereau, F. Le Cahérec, L. Leport, M. Orsel, M.F. Niogret, N. Nesi, D. Carole, The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling, BMC Plant Biol. 15 (2015) 59.

[17]
M.B. Peoples, M.J. Dalling, The interplay between proteolysis and amino acid metabolism during senescence and nitrogen reallocation, in: L.D. Nooden, A. C. Leopold (Eds.), Senescence and Aging in Plants, Academic Press, USA, 1988, pp. 181–217.
[18]

V. Buchanan-Wollaston, The molecular biology of leaf senescence, J. Exp. Bot. 48 (1997) 181–199.

[19]

A. Guiboileau, R. Sormani, C. Meyer, C. Masclaux-Daubresse, Senescence and death of plant organs: nutrient recycling and developmental regulation, C. R. Biol. 333 (2010) 382–391.

[20]

I. Rajcan, M. Tollenaar, Source: sink ratio and leaf senescence in maize: Ⅱ. nitrogen metabolism during grain filling, Field Crops Res. 60 (1999) 255–265.

[21]

M.R. Guitman, P.A. Arnozis, A.J. Barneix, Effect of source-sink relations and nitrogen nutrition on senescence and N remobilization in the flag leaf of wheat, Physiol. Plant. 82 (1991) 278–284.

[22]

A. Distelfeld, R. Avni, A.M. Fischer, Senescence, nutrient remobilization, and yield in wheat and barley, J. Exp. Bot. 65 (2014) 3783–3798.

[23]

P.O. Lim, H.J. Kim, H.G. Nam, Leaf senescence, Annu. Rev. Plant Biol. 58 (2007) 115–136.

[24]

P. Martre, P.D. Jamieson, M.A. Semenov, R.F. Zyskowski, J.R. Porter, E. Triboi, Modelling protein content and composition in relation to crop nitrogen dynamics for wheat, Eur. J. Agron. 25 (2006) 138–154.

[25]

S. Gan, R.M. Amasino, Making sense of senescence: molecular genetic regulation and manipulation of leaf senescence, Plant Physiol. 113 (1997) 313–319.

[26]

E. Triboi, A.M. Triboi-Blondel, Productivity and grain or seed composition: a new approach to an old problem-invited paper, Eur. J. Agron. 16 (2002) 163–186.

[27]
J.H. Schippers, H.C. Jing, J. Hille, P.P. Dijkwel, Developmental and hormonal control of leaf senescence, in: S. Gan (Ed.), Annual Plant Reviews, Volume 26: Senescence Processes in Plants, John Wiley & Sons Inc, Ames, Iowa, USA, 2007, pp. 145–170.
[28]

J.H. Schippers, R. Schmidt, C. Wagstaff, H.C. Jing, Living to die and dying to live: the survival strategy behind leaf senescence, Plant Physiol. 169 (2015) 914–930.

[29]

W.G. van Doorn, E.J. Woltering, Senescence and programmed cell death: substance or semantics?, J. Exp. Bot. 55 (2004) 2147–2153.

[30]
W.W. Thomson, K.A. Platt-Aloia, Ultrastructure and senescence in plants, in: W.W. Thomson, E.A. Nothnagel, R.C. Huffaker (Eds.), Plant Senescence: Its Biochemistry and Physiology, American Society of Plant Physiologists, Rockville, MD, USA, 1987, pp. 20–30.
[31]

M.S. Otegui, Y.S. Noh, D.E. Martínez, M.G. Vila Petroff, L. Andrew Staehelin, R.M. Amasino, J.J. Guiamet, Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean, Plant J. 41 (2005) 831–844.

[32]

J.E. Thompson, C.D. Froese, E. Madey, M.D. Smith, H.Y. Wen, Lipid metabolism during plant senescence, Prog. Lipid Res. 37 (1998) 119–141.

[33]

L. Avila-Ospina, M. Moison, K. Yoshimoto, C. Masclaux-Daubresse, Autophagy, plant senescence, and nutrient recycling, J. Exp. Bot. 65 (2014) 3799–3811.

[34]

M. Benbella, G.M. Paulsen, Efficacy of treatments for delaying senescence of wheat leaves: II. Senescence and grain yield under field conditions, Agron. J. 90 (1998) 332–338.

[35]

A.G. Good, A.K. Shrawat, D.G. Muench, Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?, Trends Plant Sci. 9 (2004) 597–605.

[36]

C. Uauy, J.C. Brevis, J. Dubcovsky, The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat, J. Exp. Bot. 57 (2006) 2785–2794.

[37]
P.L. Gregersen, Senescence and nutrient remobilization in crop plants, in: M.J. Hawkesford, P. Barraclough (Eds.), The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops, John Wiley & Sons Inc, USA, Ames, Iowa, 2011, pp. 83–102.
[38]

A. Bohner, S. Kojima, M. Hajirezaei, M. Melzer, N. Von Wirén, Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR 3-mediated urea retrieval from leaf apoplast, Plant J. 81 (2015) 377–387.

[39]

S. Kojima, A. Bohner, B. Gassert, L. Yuan, N.V. Wirén, AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots, Plant J. 52 (2007) 30–40.

[40]

C. Masclaux-Daubresse, F. Daniel-Vedele, J. Dechorgnat, F. Chardon, L. Gaufichon, A. Suzuki, Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture, Ann. Bot. 105 (2010) 1141–1157.

[41]

P. Martre, J.R. Porter, P.D. Jamieson, E. Triboi, Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat, Plant Physiol. 133 (2003) 1959–1967.

[42]

L. Borrás, G.A. Slafer, M.A.E. Otegui, Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal, Field Crops Res. 86 (2004) 131–146.

[43]

B. Srivalli, R. Khanna-Chopra, The developing reproductive ‘sink’ induces oxidative stress to mediate nitrogen mobilization during monocarpic senescence in wheat, Biochem. Biophys. Res. Commun. 325 (2004) 198–202.

[44]

S.C. Fan, C.S. Lin, P.K. Hsu, S.H. Lin, Y.F. Tsay, The Arabidopsis nitrate transporter NRT1. 7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate, Plant Cell 21 (2009) 2750–2761.

[45]

L. Lezhneva, T. Kiba, A.B. Feria-Bourrellier, F. Lafouge, S. Boutet-Mercey, P. Zoufan, H. Sakakibara, F. Daniel-Vedele, A. Krapp, The Arabidopsis nitrate transporter NRT 2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants, Plant J. 80 (2014) 230–241.

[46]

T. Wu, Z. Qin, L. Fan, C. Xue, X. Zhou, M. Xin, Y. Du, Involvement of CsNRT1. 7 in nitrate recycling during senescence in cucumber, J. Plant Nutr. Soil Sci. 177 (2014) 714–721.

[47]

A. Bohner, S. Kojima, M. Hajirezaei, M. Melzer, N. von Wiren, Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR 3-mediated urea retrieval from leaf apoplast, Plant J. 81 (2015) 377–387.

[48]

I.N. Roberts, C. Caputo, M.V. Criado, C. Funk, Senescence-associated proteases in plants, Physiol. Plant. 145 (2012) 130–139.

[49]
I. Diaz, M. Martinez, N. Rawlings, G. Salvesen, Handbook of Proteolytic Enzymes, Elsevier Ltd., Amsterdam, the Netherlands, 2013.
[50]

M.W. Christiansen, P.L. Gregersen, Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves, J. Exp. Bot. 65 (2014) 4009–4022.

[51]

M. Kidric, J. Kos, J. Sabotic, Proteases and their endogenous inhibitors in the plant response to abiotic stress, Bot. Serbica 38 (2014) 139–158.

[52]

K.J. Kunert, S.G. van Wyk, C.A. Cullis, B.J. Vorster, C.H. Foyer, Potential use of phytocystatins in crop improvement, with a particular focus on legumes, J. Exp. Bot. 66 (2015) 3559–3570.

[53]

M. Martinez, I. Cambra, L. Carrillo, M. Diaz-Mendoza, I. Diaz, Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination, Plant Physiol. 151 (2009) 1531–1545.

[54]

T. Tajima, A. Yamaguchi, S. Matsushima, M. Satoh, S. Hayasaka, K. Yoshimatsu, Y. Shioi, Biochemical and molecular characterization of senescence-related cysteine protease-cystatin complex from spinach leaf, Physiol. Plant. 141 (2011) 97–116.

[55]

M.D. Quain, M.E. Makgopa, B. Márquez-García, G. Comadira, N. Fernandez-Garcia, E. Olmos, D. Schnaubelt, K.J. Kunert, C.H. Foyer, Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits, Plant Biotechnol. J. 12 (2014) 903–913.

[56]

J. Je, C. Song, J.E. Hwang, W.S. Chung, C.O. Lim, DREB2C acts as a transcriptional activator of the thermo tolerance-related phytocystatin 4 (AtCYS4) gene, Transgenic Res. 23 (2014) 109–123.

[57]

H. Thomas, Senescence, ageing and death of the whole plant, New Phytol. 197 (2013) 696–711.

[58]

P.L. Gregersen, A. Culetic, L. Boschian, K. Krupinska, Plant senescence and crop productivity, Plant Mol. Biol. 82 (2013) 603–622.

[59]

P. Bancal, Decorrelating source and sink determinism of nitrogen remobilization during grain filling in wheat, Ann. Bot. 103 (2009) 1315–1324.

[60]

A. Barbottin, C. Lecomte, C. Bouchard, M.H. Jeuffroy, Nitrogen remobilization during grain filling in wheat, Crop Sci. 45 (2005) 1141–1150.

[61]

C. Uauy, A. Distelfeld, T. Fahima, A. Blechl, J. Dubcovsky, A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat, Science 314 (2006) 1298–1301.

[62]

D. Zhao, A.P. Derkx, D.C. Liu, P. Buchner, M.J. Hawkesford, Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat, Plant Biol. 17 (2015) 904–913.

[63]

N. Sultana, S. Islam, A. Juhasz, R. Yang, M. She, Z. Alhabbar, J. Zhang, W. Ma, Transcriptomic study for identification of major nitrogen stress responsive genes in Australian bread wheat cultivars, Front. Genet. 11 (2020) 583785.

[64]

K.G. Cassman, A. Dobermann, D.T. Walters, H. Yang, Meeting cereal demand while protecting natural resources and improving environmental quality, Ann. Rev. Env. Resour. 28 (2003) 315–358.

[65]

A.G. Good, P.H. Beatty, Fertilizing nature: a tragedy of excess in the commons, PLoS Biol. 9 (2011) e1001124.

[66]

R. Mulvaney, S. Khan, T. Ellsworth, Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production, J. Environ. Quality 38 (2009) 2295–2314.

[67]

P.M. Vitousek, R. Naylor, T. Crews, M. David, L. Drinkwater, E. Holland, P. Johnes, J. Katzenberger, L. Martinelli, P. Matson, Nutrient imbalances in agricultural development, Science 324 (2009) 1519.

[68]
P. Heffer, M. Prud’homme, Fertilizer outlook 2015–2019, 83rd International Fertilizer Industry Association (IFA) Annual Conference, Istanbul, Turkey, 2015.
[69]

B. Hirel, J. Le Gouis, B. Ney, A. Gallais, The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches, J. Exp. Bot. 58 (2007) 2369–2387.

[70]

M. Han, M. Okamoto, P.H. Beatty, S.J. Rothstein, A.G. Good, The genetics of nitrogen use efficiency in crop plants, Annu. Rev. Genet. 49 (2015) 269–289.

[71]

D. Plett, J. Toubia, T. Garnett, M. Tester, B.N. Kaiser, U. Baumann, Dichotomy in the NRT gene families of dicots and grass species, PLoS ONE 5 (2010) e15289.

[72]

S. Léran, K. Varala, J.C. Boyer, M. Chiurazzi, N. Crawford, F. Daniel-Vedele, L. David, R. Dickstein, E. Fernandez, B. Forde, A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants, Trends Plant Sci. 19 (2014) 5–9.

[73]

H. Thomas, C.M. Smart, Crops that stay green1, Ann. Appl. Biol. 123 (1993) 193–219.

[74]

M. Foulkes, M. Hawkesford, P. Barraclough, M. Holdsworth, S. Kerr, S. Kightley, P. Shewry, Identifying traits to improve the nitrogen economy of wheat: recent advances and future prospects, Field Crops Res. 114 (2009) 329–342.

[75]

J. Christopher, A. Manschadi, G. Hammer, A. Borrell, Developmental and physiological traits associated with high yield and stay-green phenotype in wheat, Crop Pasture Sci. 59 (2008) 354–364.

[76]

A. Borrell, G. Hammer, O. Erik, Stay-green: a consequence of the balance between supply and demand for nitrogen during grain filling?, Ann. Appl. Biol. 138 (2001) 91–95.

[77]

R. Novoa, R. Loomis, Nitrogen and plant production, Plant Soil 58 (1981) 177–204.

[78]

P. Lea, R. Azevedo, Nitrogen use efficiency. 2. Amino acid metabolism, Ann. Appl. Biol. 151 (2007) 269–275.

[79]

K. Hitz, A.J. Clark, D.A. Van Sanford, Identifying nitrogen-use efficient soft red winter wheat lines in high and low nitrogen environments, Field Crops Res. 200 (2017) 1–9.

[80]

P.B. Barraclough, J.R. Howarth, J. Jones, R. Lopez-Bellido, S. Parmar, C.E. Shepherd, M.J. Hawkesford, Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement, Eur. J. Agron. 33 (2010) 1–11.

[81]

A.K. Borrell, G.L. Hammer, Nitrogen dynamics and the physiological basis of stay-green in sorghum, Crop Sci. 40 (2000) 1295–1307.

[82]

S. Addy, , M.R. Reddy, Effect of nitrogen fertilization on stay–green and senescent sorghum hybrids in sand culture, J. Plant Nutr. 33 (2010) 185–199.

[83]

G. Mi, J.A. Liu, F. Chen, F. Zhang, Z. Cui, X. Liu, Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence, J. Plant Nutr. 26 (2003) 237–247.

[84]

K. Subedi, B. Ma, Nitrogen uptake and partitioning in stay-green and leafy maize hybrids, Crop Sci. 45 (2005) 740–747.

[85]

M. Han, J. Wong, T. Su, P.H. Beatty, A.G. Good, Identification of nitrogen use efficiency genes in barley: searching for QTLs controlling complex physiological traits, Front. Plant Sci. 7 (2016) 1587.

[86]

O. Gaju, V. Allard, P. Martre, J. Snape, E. Heumez, J. Le Gouis, D. Moreau, M. Bogard, S. Griffiths, S. Orford, S. Hubbart, J. Foulkes, Identification of traits to improve the nitrogen-use efficiency of wheat genotypes, Field Crops Res. 123 (2011) 139–152.

[87]

G. Spano, N. Di Fonzo, C. Perrotta, C. Platani, G. Ronga, D.W. Lawlor, J.A. Napier, P.R. Shewry, Physiological characterization of ‘stay green’ mutants in durum wheat, J. Exp. Bot. 54 (2003) 1415–1420.

[88]

J.R. Evans, Improving Photosynthesis, Plant Physiol. 162 (2013) 1780–1793.

[89]

J. Kromdijk, K. Głowacka, L. Leonelli, S.T. Gabilly, M. Iwai, K.K. Niyogi, S.P. Long, Improving photosynthesis and crop productivity by accelerating recovery from photoprotection, Science 354 (2016) 857–861.

[90]

H. Thomas, C.J. Howarth, Five ways to stay green, J. Exp. Bot. 51 (2000) 329–337.

[91]

J.T. Christopher, M. Veyradier, A.K. Borrell, G. Harvey, S. Fletcher, K. Chenu, Phenotyping novel stay–green traits to capture genetic variation in senescence dynamics, Funct. Plant Biol. 41 (2014) 1035–1048.

[92]

M.S. Lopes, M.P. Reynolds, Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology, J. Exp. Bot. 63 (2012) 3789–3798.

[93]

R.S. Pinto, M.P. Reynolds, K.L. Mathews, C.L. McIntyre, J.J. Olivares-Villegas, S.C. Chapman, Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects, Theor. Appl. Genet. 121 (2010) 1001–1021.

[94]

T. Kichey, B. Hirel, E. Heumez, F. Dubois, J. le Gouis, In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers, Field Crops Res. 102 (2007) 22–32.

[95]

A.G. Gorny, S. Garczynski, Genotypic and nutrition-dependent variation in water use efficiency and photosynthetic activity of leaves in winter wheat (Triticum aestivum L.), J. Appl. Genet. 43 (2002) 145–160.

[96]

S.A. Gizaw, K. Garland-Campbell, A.H. Carter, Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions, Field Crops Res. 196 (2016) 168–179.

[97]

M.N.U. Dowla, I. Edwards, G. O’Hara, S. Islam, W. Ma, Developing wheat for improved yield and adaptation under a changing climate: optimization of a few key genes, Engineering 4 (2018) 514–522.

[98]

O. Rybalka, B. Morgun, S. Polischuk, GPC-B1 (NAM-B1) gene as a new genetic resource in wheat breeding for high grain protein content and micronutrients, Fiziol. rast. Genet. 50 (2018) 279–298.

[99]

L. Asplund, G. Bergkvist, M.W. Leino, A. Westerbergh, M. Weih, Swedish spring wheat varieties with the rare high grain protein allele of NAM-B1 differ in leaf senescence and grain mineral content, PLoS ONE 8 (2013) e59704.

[100]

H. Eagles, R. McLean, R. Eastwood, M.J. Appelbee, K. Cane, P. Martin, H. Wallwork, High-yielding lines of wheat carrying Gpc-B1 adapted to Mediterranean-type environments of the south and west of Australia, Crop Pasture Sci. 65 (2014) 854–861.

[101]

J.C. Brevis, C.F. Morris, F. Manthey, J. Dubcovsky, Effect of the grain protein content locus Gpc-B1 on bread and pasta quality, J. Cereal Sci. 51 (2010) 357–365.

[102]

P. Borrill, B. Fahy, A.M. Smith, C. Uauy, Wheat grain filling is limited by grain filling capacity rather than the duration of flag leaf photosynthesis: a case study using NAM RNAi plants, PLoS ONE 10 (2015) e0134947.

[103]

M. Bogard, V. Allard, M. Brancourt-Hulmel, E. Heumez, J.M. Machet, M.H. Jeuffroy, P. Gate, P. Martre, J. le Gouis, Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat, J. Exp. Bot. 61 (2010) 4303–4312.

[104]

J.M. Monaghan, J.W. Snape, A.J.S. Chojecki, P.S. Kettlewell, The use of grain protein deviation for identifying wheat cultivars with high grain protein concentration and yield, Euphytica 122 (2001) 309–317.

[105]

N. Roy, S. Islam, Z. Yu, M. Lu, D. Lafiandra, Y. Zhao, M. Anwar, J.E. Mayer, W. Ma, Introgression of an expressed HMW 1Ay glutenin subunit allele into bread wheat cv. Lincoln increases grain protein content and breadmaking quality without yield penalty, Theor. Appl. Genet. 133 (2020) 517–528.

[106]

G. Branlard, M. Dardevet, R. Saccomano, F. Lagoutte, J. Gourdon, Genetic diversity of wheat storage proteins and bread wheat quality, Euphytica 119 (2001) 157–169.

[107]

C. Daniel, E. Triboi, Effects of temperature and nitrogen nutrition on the grain composition of winter wheat: effects on gliadin content and composition, J. Cereal Sci. 32 (2000) 45–56.

[108]

D.W. Lawlor, Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems, J. Exp. Bot. 53 (2002) 773–787.

[109]

H.S. Balyan, P.K. Gupta, S. Kumar, R. Dhariwal, V. Jaiswal, S. Tyagi, P. Agarwal, V. Gahlaut, S. Kumari, Genetic improvement of grain protein content and other health-related constituents of wheat grain, Plant Breed. 132 (2013) 446–457.

[110]

N.W. Simmonds, The relation between yield and protein in cereal grain, J. Sci. Food Agric. 67 (1995) 309–315.

[111]

J.C. Brevis, J. Dubcovsky, Effects of the chromosome region including the Gpc-B1 locus on wheat grain and protein yield, Crop Sci. 50 (2010) 93–104.

[112]

H. Pleijel, L. Mortensen, J. Fuhrer, K. Ojanperä, H. Danielsson, Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability, Agric. Ecosyst. Environ. 72 (1999) 265–270.

[113]

J. Nyikako, A. Schierholt, B. Kessel, H.C. Becker, Genetic variation in nitrogen uptake and utilization efficiency in a segregating DH population of winter oilseed rape, Euphytica 199 (2014) 3–11.

[114]

T. Garnett, D. Plett, S. Heuer, M. Okamoto, Genetic approaches to enhancing nitrogen–use efficiency (NUE) in cereals: challenges and future directions, Funct. Plant Biol. 42 (2015) 921–941.

[115]

F. Cormier, J. Foulkes, B. Hirel, D. Gouache, Y. Moënne-Loccoz, J., Le Gouis, Breeding for increased nitrogen-use efficiency: a review for wheat (T. aestivum L.), Plant Breed. 135 (2016) 255–278.

[116]

A. Fischer, U. Feller, Senescence and protein degradation in leaf segments of young winter wheat: influence of leaf age, J. Exp. Bot. 45 (1994) 103–109.

[117]

H. Wang, T. McCaig, R. DePauw, J. Clarke, Flag leaf physiological traits in two high-yielding Canada Western Red Spring wheat cultivars, Can. J. Plant Sci. 88 (2008) 35–42.

[118]
R. Sylvester-Bradley, R. Scott, C. Wright, Physiology in the Production and Improvement of Cereals, Research Review No. 18. Agriculture and Horticulture Development Board (AHDB), Stoneleigh Park, Kenilworth, Warwickshire, UK, 1990.
[119]

V. Verma, M. Foulkes, A. Worland, R.S. Bradley, P. Caligari, J. Snape, Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments, Euphytica 135 (2004) 255–263.

[120]

A.P. Derkx, S. Orford, S. Griffiths, M.J. Foulkes, M.J. Hawkesford, Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning, J. Integr. Plant Biol. 54 (2012) 555–566.

[121]

Z. Alhabbar, S. Islam, R. Yang, D. Diepeveen, M. Anwar, S. Balotf, N. Sultana, R. Maddern, M. She, J. Zhang, Associations of NAM-A1 alleles with the onset of senescence and nitrogen use efficiency under Western Australian conditions, Euphytica 214 (2018) 180.

[122]

L. Joppa, C. Du, G.E. Hart, G.A. Hareland, Mapping gene (s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines, Crop Sci. 37 (1997) 1586–1589.

[123]

M. Prasad, R.K. Varshney, A. Kumar, H.S. Balyan, P.C. Sharma, K.J. Edwards, H. Singh, H.S. Dhaliwal, J.K. Roy, P.K. Gupta, A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat, Theor. Appl. Genet. 99 (1999) 341–345.

[124]

C. Groos, N. Robert, E. Bervas, G. Charmet, Genetic analysis of grain protein–content, grain yield and thousand-kernel weight in bread wheat, Theor. Appl. Genet. 106 (2003) 1032–1040.

[125]
L. Avivi, High grain protein content in wild tetraploid wheat Triticum dicoccoides Korn, (1978) 372–380.
[126]

R. Avni, R. Zhao, S. Pearce, Y. Jun, C. Uauy, F. Tabbita, T. Fahima, A. Slade, J. Dubcovsky, A. Distelfeld, Functional characterization of GPC-1 genes in hexaploid wheat, Planta 239 (2014) 313–324.

[127]

F. Tabbita, S. Pearce, A.J. Barneix, Breeding for increased grain protein and micronutrient content in wheat: ten years of the GPC-B1 gene, J. Cereal Sci. 73 (2017) 183–191.

[128]
M.J. Hawkesford, J.R. Howarth, Transcriptional profiling approaches for studying nitrogen use efficiency, John Wiley & Sons Inc, Ames, Iowa, USA (2010) 41–62.
[129]

P. Davies, S. Gan, Towards an integrated view of monocarpic plant senescence, Russ. J. Plant Physiol. 59 (2012) 467–478.

[130]

M. Koornneef, C.A. Blanco, A.J. Peeters, W. Soppe, Genetic control of flowering time in Arabidopsis, Annu. Rev. Plant Biol. 49 (1998) 345–370.

[131]

E. Breeze, E. Harrison, S. McHattie, L. Hughes, R. Hickman, C. Hill, S. Kiddle, Y.S. Kim, C.A. Penfold, D. Jenkins, C. Zhang, K. Morris, C. Jenner, S. Jackson, B. Thomas, A. Tabrett, R. Legaie, J.D. Moore, D.L. Wild, S. Ott, D. Rand, J. Beynon, K. Denby, A. Mead, V.B. Wollaston, High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation, Plant Cell 23 (2011) 873–894.

[132]

Y. Guo, Z. Cai, S. Gan, Transcriptome of Arabidopsis leaf senescence, Plant Cell Environ. 27 (2004) 521–549.

[133]

R.S. Sekhon, K.L. Childs, N. Santoro, C.E. Foster, C.R. Buell, N. de Leon, S.M. Kaeppler, Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize, Plant Physiol. 159 (2012) 1730–1744.

[134]

N.A. Palmer, T.D. Reiner, D. Horvath, T.H. Moss, B. Waters, C. Tobias, G. Sarath, Switchgrass (Panicum virgatum L.) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics, Funct. Integr. Genomics 15 (2015) 1–16.

[135]

P.L. Gregersen, P.B. Holm, Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.), Plant Biotechnol. J. 5 (2007) 192–206.

[136]

L.M. Weaver, S. Gan, B. Quirino, R.M. Amasino, A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment, Plant Mol. Biol. 37 (1998) 455–469.

[137]

H. Ougham, I. Armstead, C. Howarth, I. Galyuon, I. Donnison, H. Thomas, The genetic control of senescence revealed by mapping quantitative trait loci, Ann. Plant Rev. Senes. Proc. Plants 26 (2008) 171.

[138]

R. Yang, A. Juhasz, Y. Zhang, X. Chen, Y. Zhang, M. She, J. Zhang, R. Maddern, I. Edwards, D. Diepeveen, Molecular characterisation of the NAM–1 genes in bread wheat in Australia, Crop Pasture Sci. 69 (2019) 1173–1181.

[139]

Y. He, W. Tang, J.D. Swain, A.L. Green, T.P. Jack, S. Gan, Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines, Plant Physiol. 126 (2001) 707–716.

[140]

Y. Guo, S. Gan, Leaf senescence: signals, execution, and regulation, Curr. Top. Dev. Biol. 71 (2005) 83–112.

[141]

P.O. Lim, H.G. Nam, P. Gerald, The molecular and genetic control of leaf senescence and longevity in Arabidopsis, Curr. Top. Dev. Biol. 67 (2005) 50–85.

[142]

Y. Guo, S.S. Gan, Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments, Plant Cell Environ. 35 (2012) 644–655.

[143]

P.L. Curci, R. Aiese Cigliano, D.L. Zuluaga, M. Janni, W. Sanseverino, G. Sonnante, Transcriptomic response of durum wheat to nitrogen starvation, Sci. Rep. 7 (2017) 1176.

[144]

J. Wang, K. Song, L. Sun, Q. Qin, Y. Sun, J. Pan, Y. Xue, Morphological and transcriptome analysis of wheat seedlings response to low nitrogen stress, Plants 8 (2019) 98.

[145]

K. Nakashima, H. Takasaki, J. Mizoi, K. Shinozaki, K.Y. Shinozaki, NAC transcription factors in plant abiotic stress responses, Biochim. Biophys. Acta. Gene. Regul. Mech. 2012 (1819) 97–103.

[146]

J.H. Kim, H.R. Woo, J. Kim, P.O. Lim, I.C. Lee, S.H. Choi, D. Hwang, H.G. Nam, Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis, Science 323 (2009) 1053–1057.

[147]

P. Garapati, G.P. Xue, S.M. Bosch, S. Balazadeh, Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades, Plant Physiol. 168 (2015) 1122–1139.

[148]

A. Skirycz, H. Claeys, S. De Bodt, A. Oikawa, S. Shinoda, M. Andriankaja, K. Maleux, N.B. Eloy, F. Coppens, S.D. Yoo, Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest, Plant Cell 23 (2011) 1876–1888.

[149]

K.L.C. Wang, H. Li, J.R. Ecker, Ethylene biosynthesis and signaling networks, Plant Cell 14 (2002) S131-S151.

[150]

F.B. Abeles, L.J. Dunn, P. Morgens, A. Callahan, R.E. Dinterman, J. Schmidt, Induction of 33 kD and 60 kD peroxidases during ethylene-induced senescence of cucumber cotyledons, Plant Physiol. 87 (1988) 609–615.

[151]

H.C. Jing, J.H. Schippers, J. Hille, P.P. Dijkwel, Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis, J. Exp. Bot. 56 (2005) 2915–2923.

[152]

J. Beltrano, A. Carbone, E.R. Montaldi, J.J. Guiamet, Ethylene as promoter of wheat grain maturation and ear senescence, Plant Growth Regul. 15 (1994) 107–112.

[153]

J.H. Kim, K.M. Chung, H.R. Woo, Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in crosstalk among multiple hormone-mediated senescence pathways, Genes Genomics 33 (2011) 373–381.

[154]

Z. Li, J. Peng, X. Wen, H. Guo, Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis, Plant Cell 25 (2013) 3311–3328.

[155]

Y. Sakuraba, J. Jeong, M.Y. Kang, J. Kim, N.C. Paek, G. Choi, Phytochrome–interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis, Nat. Commun. 5 (2014) 4636.

[156]

K.N. Chang, S. Zhong, M.T. Weirauch, G. Hon, M. Pelizzola, H. Li, S.S.C. Huang, R.J. Schmitz, M.A. Urich, D. Kuo, Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis, eLife 2 (2013) e00675.

[157]

H. Huang, B. Liu, L. Liu, S. Song, Jasmonate action in plant growth and development, J. Exp. Bot. 68 (2017) 1349–1359.

[158]

J. Beltrano, M. Ronco, E. Montaldi, A. Carbone, Senescence of flag leaves and ears of wheat hastened by methyl jasmonate, J. Plant Growth Regul. 17 (1998) 53–57.

[159]

Y. He, H. Fukushige, D.F. Hildebrand, S. Gan, Evidence supporting a role of jasmonic acid in arabidopsis leaf senescence, Plant Physiol. 128 (2002) 876–884.

[160]

Z. Kong, M. Li, W. Yang, W. Xu, Y. Xue, A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice, Plant Physiol. 141 (2006) 1376–1388.

[161]

L. Pauwels, K. Morreel, E. de Witte, F. Lammertyn, M. Van Montagu, W. Boerjan, D. Inzé, A. Goossens, Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 1380–1385.

[162]

C. Schommer, J.F. Palatnik, P. Aggarwal, A. Chételat, P. Cubas, E.E. Farmer, U. Nath, D. Weigel, Control of jasmonate biosynthesis and senescence by miR319 targets, PLoS Biol. 6 (2008) e230.

[163]

M.M. Zhao, X.W. Zhang, Y.W. Liu, K. Li, Q. Tan, S. Zhou, G. Wang, C.J. Zhou, A WRKY transcription factor, TaWRKY42–B, facilitates initiation of leaf senescence by promoting jasmonic acid biosynthesis, BMC Plant Biol. 20 (2020) 1–22.

[164]

A. Sakhabutdinova, D. Fatkhutdinova, M. Bezrukova, F. Shakirova, Salicylic acid prevents the damaging action of stress factors on wheat plants, Bulg. J. Plant Physiol. 21 (2003) 314–319.

[165]

E. van der Graaff, R. Schwacke, A. Schneider, M. Desimone, U.I. Flügge, R. Kunze, Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence, Plant Physiol. 141 (2006) 776–792.

[166]

S. Robatzek, I.E. Somssich, A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence-and defence-related processes, Plant J. 28 (2001) 123–133.

[167]

Y. Miao, T. Laun, P. Zimmermann, U. Zentgraf, Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis, Plant Mol. Biol. 55 (2004) 853–867.

[168]

S. Besseau, J. Li, E.T. Palva, WRKY54 and WRKY70 co–operate as negative regulators of leaf senescence in Arabidopsis thaliana, J. Exp. Bot. 63 (2012) 2667–2679.

[169]

B. Ülker, M.S. Mukhtar, I.E. Somssich, The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways, Planta 226 (2007) 125–137.

[170]

S. Xiao, W. Gao, Q.F. Chen, S.W. Chan, S.X. Zheng, J. Ma, M. Wang, R. Welti, M.L. Chye, Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence, Plant Cell 22 (2010) 1463–1482.

[171]

K. Yoshimoto, Y. Jikumaru, Y. Kamiya, M. Kusano, C. Consonni, R. Panstruga, Y. Ohsumi, K. Shirasu, Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis, Plant Cell 21 (2009) 2914–2927.

[172]

P. Guo, Z. Li, P. Huang, B. Li, S. Fang, J. Chu, H. Guo, A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence, Plant Cell 29 (2017) 2854–2870.

[173]

T. Hirayama, K. Shinozaki, Research on plant abiotic stress responses in the post-genome era: past, present and future, Plant J. 61 (2010) 1041–1052.

[174]

S.C. Lee, S. Luan, ABA signal transduction at the crossroad of biotic and abiotic stress responses, Plant Cell Environ. 35 (2012) 53–60.

[175]

S. Gepstein, K.V. Thimann, Changes in the abscisic acid content of oat leaves during senescence, Proc. Natl. Acad. Sci. U. S. A. 77 (1980) 2050–2053.

[176]

K.T. Hung, C.H. Kao, Hydrogen peroxide is necessary for abscisic acid–induced senescence of rice leaves, J. Plant Physiol. 161 (2004) 1347–1357.

[177]

J. Yang, E. Worley, M. Udvardi, A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves, Plant Cell 26 (2014) 4862–4874.

[178]

V. Buchanan-Wollaston, T. Page, E. Harrison, E. Breeze, P.O. Lim, H.G. Nam, J.F. Lin, S.H. Wu, J. Swidzinski, K. Ishizaki, Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis, Plant J. 42 (2005) 567–585.

[179]

D. Matsuoka, T. Yasufuku, T. Furuya, T. Nanmori, An abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity, Plant Mol. Biol. 87 (2015) 565–575.

[180]

S.Y. Park, J.W. Yu, J.S. Park, J. Li, S.C. Yoo, N.Y. Lee, S.K. Lee, S.W. Jeong, H.S. Seo, H.J. Koh, The senescence-induced staygreen protein regulates chlorophyll degradation, Plant Cell 19 (2007) 1649–1664.

[181]

J. Yang, J. Zhang, Z. Wang, Q. Zhu, L. Liu, Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling, Plant Cell Environ. 26 (2003) 1621–1631.

[182]

A. Singh, P. Breja, J.P. Khurana, P. Khurana, Wheat brassinosteroid-insensitive1 (TaBRI1) interacts with members of TaSERK gene family and cause early flowering and seed yield enhancement in Arabidopsis, PLoS ONE 11 (2016) e0153273.

[183]

J. Li, J. Chory, A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction, Cell 90 (1997) 929–938.

[184]

S.S. Çağ, The effect of epibrassinolide on senescence in wheat leaves, Biotechnol. Biotechnol. Equip. 21 (2007) 63–65.

[185]

P. He, M. Osaki, M. Takebe, T. Shinano, J. Wasaki, Endogenous hormones and expression of senescence-related genes in different senescent types of maize, J. Exp. Bot. 56 (2005) 1117–1128.

[186]

K. He, X. Gou, T. Yuan, H. Lin, T. Asami, S. Yoshida, S.D. Russell, J. Li, BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways, Curr. Biol. 17 (2007) 1109–1115.

[187]

Y. Yin, Z.Y. Wang, S.M. Garcia, J. Li, S. Yoshida, T. Asami, J. Chory, BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation, Cell 109 (2002) 181–191.

[188]

Y. Sun, X.Y. Fan, D.M. Cao, W. Tang, K. He, J.Y. Zhu, J.X. He, M.Y. Bai, S. Zhu, E. Oh, Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis, Dev. Cell 19 (2010) 765–777.

[189]

X. Yu, L. Li, J. Zola, M. Aluru, H. Ye, A. Foudree, H. Guo, S. Anderson, S. Aluru, P. Liu, A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana, Plant J. 65 (2011) 634–646.

[190]

S. Saini, I. Sharma, P.K. Pati, Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks, Front. Plant Sci. 6 (2015) 950.

[191]

M.T. Waters, P. Wang, M. Korkaric, R.G. Capper, N.J. Saunders, J.A. Langdale, GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis, Plant Cell 21 (2009) 1109–1128.

[192]

Q.F. Li, C. Wang, L. Jiang, S. Li, S.S. Sun, J.X. He, An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis, Sci. Signal. 5 (2012) ra72.

[193]

J.T. Mindrebo, C.M. Nartey, Y. Seto, M.D. Burkart, J.P. Noel, Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom, Curr. Opin. Struct. Biol. 41 (2016) 233–246.

[194]

M. Umehara, Strigolactone, a key regulator of nutrient allocation in plants, Plant Biotechnol. 28 (2011) 429–437.

[195]

V. Gomez Roldan, S. Fermas, P.B. Brewer, V. Puech Pagès, E.A. Dun, J.P. Pillot, F. Letisse, R. Matusova, S. Danoun, J.C. Portais, Strigolactone inhibition of shoot branching, Nature 455 (2008) 189–194.

[196]

Y. Yamada, S. Furusawa, S. Nagasaka, K. Shimomura, S. Yamaguchi, M. Umehara, Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency, Planta 240 (2014) 399–408.

[197]

J.A. López-Ráez, T. Charnikhova, V. Gómez-Roldán, R. Matusova, W. Kohlen, R. De Vos, F. Verstappen, V. Puech-Pages, G. Bécard, P. Mulder, Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation, New Phytol. 178 (2008) 863–874.

[198]

P. Stirnberg, K. van De Sande, H.O. Leyser, MAX1 and MAX2 control shoot lateral branching in Arabidopsis, Development 129 (2002) 1131–1141.

[199]

Y. Wang, S. Sun, W. Zhu, K. Jia, H. Yang, X. Wang, Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching, Dev. Cell 27 (2013) 681–688.

[200]

C. Hamiaux, R.S. Drummond, B.J. Janssen, S.E. Ledger, J.M. Cooney, R.D. Newcomb, K.C. Snowden, DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone, Curr. Biol. 22 (2012) 2032–2036.

[201]

M. Sedaghat, Z.T. Sarvestani, Y. Emam, A.M. Bidgoli, Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought, Plant Physiol. Biochem. 119 (2017) 59–69.

[202]

S. Perilli, L. Moubayidin, S. Sabatini, The molecular basis of cytokinin function, Curr. Opin. Plant Biol. 13 (2010) 21–26.

[203]

S. Ha, R. Vankova, K.Y. Shinozaki, K. Shinozaki, L.S.P. Tran, Cytokinins: metabolism and function in plant adaptation to environmental stresses, Trends Plant Sci. 17 (2012) 172–179.

[204]

S. Mayak, A. Halevy, Cytokinin activity in rose petals and its relation to senescence, Plant Physiol. 46 (1970) 497–499.

[205]

T. Schmülling, T. Werner, M. Riefler, E. Krupková, I.B. y Manns, Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species, J. Plant Res. 116 (2003) 241–252.

[206]

S. Gan, R.M. Amasino, Inhibition of leaf senescence by autoregulated production of cytokinin, Science 270 (1995) 1986–1988.

[207]

T. Roitsch, M.C. González, Function and regulation of plant invertases: sweet sensations, Trends Plant Sci. 9 (2004) 606–613.

[208]

C. Rodrigues, L.P.d.S. Vandenberghe, J. de Oliveira, C.R. Soccol, New perspectives of gibberellic acid production: a review, Crit. Rev. Biotechnol. 32 (2012) 263–273.

[209]

M.M. Evans, R.S. Poethig, Gibberellins promote vegetative phase change and reproductive maturity in maize, Plant Physiol. 108 (1995) 475–487.

[210]

M. Ueguchi Tanaka, M. Ashikari, M. Nakajima, H. Itoh, E. Katoh, M. Kobayashi, T.Y. Chow, C.H. Yueie, H. Kitano, I. Yamaguchi, GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin, Nature 437 (2005) 693–698.

[211]

M. Chen, A. Maodzeka, L. Zhou, E. Ali, Z. Wang, L. Jiang, Removal of DELLA repression promotes leaf senescence in Arabidopsis, Plant Sci. 219 (2014) 26–34.

[212]

R. Sexton, J.A. Roberts, Cell biology of abscission, Annu. Rev. Plant Physiol. 33 (1982) 133–162.

[213]

J.H. Park, S.A. Oh, Y.H. Kim, H.R. Woo, H.G. Nam, Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis, Plant Mol. Biol. 37 (1998) 445–454.

[214]

J.H. Schippers, Transcriptional networks in leaf senescence, Cur. Opin. Plant Biol. 27 (2015) 77–83.

[215]

J. Bresson, S. Bieker, L. Riester, J. Doll, U. Zentgraf, A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations, J. Exp. Bot. 69 (2017) 769–786.

[216]

Y. Xie, K. Huhn, R. Brandt, M. Potschin, S. Bieker, D. Straub, J. Doll, T. Drechsler, U. Zentgraf, S. Wenkel, REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis, Development 141 (2014) 4772–4783.

[217]

S. Robatzek, I.E. Somssich, Targets of AtWRKY6 regulation during plant senescence and pathogen defense, Genes Dev. 16 (2002) 1139–1149.

[218]

H. Zhang, M. Zhao, Q. Song, L. Zhao, G. Wang, C. Zhou, Identification and function analyses of senescence-associated WRKYs in wheat, Biochem. Biophys. Res. Commun. 474 (2016) 761–767.

[219]

S. Okay, E. Derelli, T. Unver, Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress, Mol. Genet. Genom. 289 (2014) 765–781.

[220]

L. Zhao, W. Zhang, Q. Song, Y. Xuan, K. Li, L. Cheng, H. Qiao, G. Wang, C. Zhou, A WRKY transcription factor, TaWRKY40-D, promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat, Plant Biol. 22 (2020) 1072–1085.

[221]

M. Aida, T. Ishida, H. Fukaki, H. Fujisawa, M. Tasaka, Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant, Plant Cell 9 (1997) 841–857.

[222]

A.N. Olsen, H.A. Ernst, L.L. Leggio, K. Skriver, NAC transcription factors: structurally distinct, functionally diverse, Trends Plant Sci. 10 (2005) 79–87.

[223]

H. Hu, M. Dai, J. Yao, B. Xiao, X. Li, Q. Zhang, L. Xiong, Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 12987–12992.

[224]

S.G. Kim, S.Y. Kim, C.M. Park, A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis, Planta 226 (2007) 647–654.

[225]

L.S.P. Tran, K. Nakashima, Y. Sakuma, S.D. Simpson, Y. Fujita, K. Maruyama, M. Fujita, M. Seki, K. Shinozaki, K. Yamaguchi-Shinozaki, Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter, Plant Cell 16 (2004) 2481–2498.

[226]

X.J. He, R.L. Mu, W.H. Cao, Z.G. Zhang, J.S. Zhang, S.Y. Chen, AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development, Plant J. 44 (2005) 903–916.

[227]

R.W. Sablowski, E.M. Meyerowitz, A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA, Cell 92 (1998) 93–103.

[228]

K. Greve, L. Tanja, M.K. Jensen, F.M. Poulsen, K. Skriver, Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization, Biochem. J. 371 (2003) 97–108.

[229]

K. Nakashima, L.S.P. Tran, D. Van Nguyen, M. Fujita, K. Maruyama, D. Todaka, Y. Ito, N. Hayashi, K. Shinozaki, K. Yamaguchi-Shinozaki, Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice, Plant J. 51 (2007) 617–630.

[230]

M. Duval, T.F. Hsieh, S.Y. Kim, T.L. Thomas, Molecular characterization of AtNAM: a member of theArabidopsis NAC domain superfamily, Plant Mol. Biol. 50 (2002) 237–248.

[231]

R.A. Sperotto, F.K. Ricachenevsky, G.L. Duarte, T. Boff, K.L. Lopes, E.R. Sperb, M.A. Grusak, J.P. Fett, Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor, Planta 230 (2009) 985–1002.

[232]

M.K. Jensen, T. Kjaersgaard, M.M. Nielsen, P. Galberg, K. Petersen, C. O’Shea, K. Skriver, The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling, Biochem. J. 426 (2010) 183–196.

[233]

D.P. Sroka, C. O'Shea, P.L. Gregersen, K. Skriver, NAC Transcription factors in senescence: from molecular structure to function in crops, Plants 4 (2015) 412–448.

[234]

H.J. Kim, H.G. Nam, P.O. Lim, Regulatory network of NAC transcription factors in leaf senescence, Curr. Opin. Plant Biol. 33 (2016) 48–56.

[235]

S. Lee, P.J. Seo, H.J. Lee, C.M. Park, A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis, Plant J. 70 (2012) 831–844.

[236]

Y. Sakuraba, W. Piao, J.H. Lim, S.H. Han, Y.S. Kim, G. An, N.C. Paek, Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle, Plant Cell Physiol. 56 (2015) 2325–2339.

[237]

S.H. Lee, Y. Sakuraba, T. Lee, K.W. Kim, G. An, H.Y. Lee, N.C. Paek, Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence, J. Integr. Plant Biol. 57 (2015) 562–576.

[238]

C.T. Kwon, G. Song, S.H. Kim, J. Han, S.C. Yoo, G. An, K. Kang, N.C. Paek, Functional deficiency of phytochrome B improves salt tolerance in rice, Environ. Exp. Bot. 148 (2018) 100–108.

[239]

C. Liang, Y. Wang, Y. Zhu, J. Tang, B. Hu, L. Liu, S. Ou, H. Wu, X. Sun, J. Chu, OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 10013–10018.

[240]

M.N. Saidi, D. Mergby, F. Brini, Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum), Plant Physiol. Biochem. 112 (2017) 117–128.

[241]

L. Asplund, J. Hagenblad, M.W. Leino, Re-valuating the history of the wheat domestication gene NAMB1 using historical plant material, J. Archaeol. Sci. 37 (2010) 2303–2307.

[242]

X. Chen, G. Song, S. Zhang, Y. Li, G. Jie, I. Shahidul, W. Ma, G. Li, W. Ji, The allelic distribution and variation analysis of the NAM-B1 gene in Chinese wheat cultivars, J. Integr. Agric. 16 (2017) 1294–1303.

[243]

B.M. Waters, C. Uauy, J. Dubcovsky, M.A. Grusak, Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain, J. Exp. Bot. 60 (2009) 4263–4274.

[244]

I. Rajcan, M. Tollenaar, Source: sink ratio and leaf senescence in maize: I. dry matter accumulation and partitioning during grain filling, Field Crops Res. 60 (1999) 245–253.

[245]

J.C. Brevis, J. Dubcovsky, Effects of the chromosome region including the locus on wheat grain and protein yield, Crop Sci. 50 (2010) 93–104.

[246]

M. Kumar, Z. Lu, A.A.L. Takwi, W. Chen, N.S. Callander, K.S. Ramos, K.H. Young, Y. Li, Negative regulation of the tumor suppressor p53 gene by microRNAs, Oncogene 30 (2011) 843–853.

[247]

F. Tabbita, S. Lewis, J.P. Vouilloz, M.A. Ortega, M. Kade, P.E. Abbate, A.J. Barneix, Effects of the Gpc-B1 locus on high grain protein content introgressed into Argentinean wheat germplasm, Plant Breed. 132 (2013) 48–52.

[248]

Z. Alhabbar, R. Yang, A. Juhasz, H. Xin, M. She, M. Anwar, N. Sultana, D. Diepeveen, W. Ma, S. Islam, NAM gene allelic composition and its relation to grain-filling duration and nitrogen utilisation efficiency of Australian wheat, PLoS ONE 13 (2018) e0205448.

[249]

M. Rauf, M. Arif, H. Dortay, L.P. Matallana-Ramírez, M.T. Waters, H.G. Nam, P.O. Lim, B. Mueller-Roeber, S. Balazadeh, ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription, EMBO Reports 14 (2013) 382–388.

[250]

K. Qiu, Z. Li, Z. Yang, J. Chen, S. Wu, X. Zhu, S. Gao, J. Gao, G. Ren, B. Kuai, EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis, PLoS Genet. 11 (2015) e1005399.

[251]

L.P. Ramirez, M. Rauf, S.F. Barhom, H. Dortay, G.P. Xue, W.D. Laser, A. Lers, S. Balazadeh, B.M. Roeber, NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis, Mol. Plant 6 (2013) 1438–1452.

[252]

Y. Guo, S. Gan, AtNAP, a NAC family transcription factor, has an important role in leaf senescence, Plant J. 46 (2006) 601–612.

[253]

H.J. Kim, J.H. Park, J. Kim, J.J. Kim, S. Hong, J. Kim, J.H. Kim, H.R. Woo, C. Hyeon, P.O. Lim, H.G. Nam, D. Hwang, Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E4930-E4939.

[254]

A. Wu, A.D. Allu, P. Garapati, H. Siddiqui, H. Dortay, M.I. Zanor, M.A.A. Fabado, S.M. Bosch, C. Antonio, T. Tohge, JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis, Plant Cell 24 (2012) 482–506.

[255]

M.J. Hawkesford, J.R. Howarth, Transcriptional profiling approaches for studying nitrogen use efficiency, Ann. Plant Rev. (2018) 41–62.

[256]

G. Spano, N. Di Fonzo, C. Perrotta, C. Platani, G. Ronga, D. Lawlor, J. Napier, P. Shewry, Physiological characterization of ‘stay green’mutants in durum wheat, J. Exp. Bot. 54 (2003) 1415–1420.

[257]

S. Ito, K. Ito, N. Abeta, R. Takahashi, Y. Sasaki, S. Yajima, Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition, Plant Signal. Behav. 11 (2016) e1126031.

[258]

H.R. Woo, K.M. Chung, J.H. Park, S.A. Oh, T. Ahn, S.H. Hong, S.K. Jang, H.G. Nam, ORE9, an F-box protein that regulates leaf senescence in Arabidopsis, Plant Cell 13 (2001) 1779–1790.

The Crop Journal
Pages 703-717
Cite this article:
Sultana N, Islam S, Juhasz A, et al. Wheat leaf senescence and its regulatory gene network. The Crop Journal, 2021, 9(4): 703-717. https://doi.org/10.1016/j.cj.2021.01.004

344

Views

4

Downloads

41

Crossref

39

Web of Science

38

Scopus

0

CSCD

Altmetrics

Received: 02 February 2020
Revised: 25 November 2020
Accepted: 29 January 2021
Published: 13 March 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return