AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Special Focus | Open Access

Mitochondrial localization of ORF346 causes pollen abortion in alloplasmic male sterility

Shifei Sanga,b,1Hongtao Chenga,1Mengyu HaoaBingli DingaDesheng MeiaHui WangaWenxiang WangaJia LiuaLi FuaKede LiubQiong Hua( )
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China

1 These authors contributed equally to the work.

Show Author Information

Abstract

The Nsa cytoplasmic male sterility (CMS) system confers stable male sterility and offers great potential for production of hybrid seeds in oilseed rape. However, genes responsible for male sterility in Nsa CMS have not been identified. By mitochondrial genome sequencing of Nsa CMS and its maintainer line, we identified in an Nsa CMS line several chimeric genes encoding hypothetical proteins harboring transmembrane domains. One novel chimeric gene orf346 showed high identity with cox1 at the 5′ terminal region and was co-transcribed with nad3 and rps12 genes. Transgenic plants of orf346 fused with or without mitochondrial targeting peptide conferred complete male sterility in Arabidopsis. ORF346 was mitochondrion-localized. Expression of orf346 in Escherichia coli inhibited bacterial growth, with excessive accumulation of reactive oxygen species and decreased ATP content. These results reveal a link between the newly identified mitochondrial gene orf346 and the abortion of Nsa CMS. Inadequate energy supply and excessive accumulation of reactive oxygen species may account for pollen abortion in Nsa CMS plants.

References

[1]

K.D. Laser, N.R. Lersten, Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms, Bot. Rev. 33 (1972) 337-346.

[2]

L. Chen, Y.G. Liu, Male sterility and fertility restoration in crops, Annu. Rev. Plant Biol. 65 (2014) 579-606.

[3]

R. Horn, K.J. Gupta, N. Colombo, Mitochondrion role in molecular basis of cytoplasmic male sterility, Mitochondrion 19 (2014) 198-205.

[4]

Q. Hu, Y.C. Li, D.S. Mei, X.P. Fang, N.H. Lise, B.A. Senvn, Establishment and identification of cytoplasmic male sterility in Brassica napus by intergeneric somatic hybridization, Sci. Agric. Sin. 37 (2004) 333-338.

[5]

J. Liu, R. Xiang, W. Wang, D. Mei, Y. Li, A.S. Mason, L.i. Fu, Q. Hu, Cytological and molecular analysis of Nsa CMS in Brassica napus L., Euphytica 206 (2015) 279-286.

[6]

K. Du, Q. Liu, X. Wu, J. Jiang, J. Wu, Y. Fang, A. Li, Y. Wang, Morphological structure and transcriptome comparison of the cytoplasmic male sterility line in Brassica napus (SaNa-1A) derived from somatic hybridization and its maintainer line SaNa-1B, Front. Plant Sci. 7 (2016) 1313.

[7]

W. Wei, Y. Li, L. Wang, S. Liu, X. Yan, D. Mei, Y. Li, Y. Xu, P. Peng, Q. Hu, Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering, Theor. Appl. Genet. 120 (2010) 1089-1097.

[8]

M. Uyttewaal, N. Arnal, M. Quadrado, A. Martin-Canadell, N. Vrielynck, S. Hiard, H. Gherbi, A. Bendahmane, F. Budar, H. Mireau, Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility, Plant Cell 20 (2008) 3331-3345.

[9]

M. Singh, G.G. Brown, Characterization of expression of a mitochondrial gene region associated with the Brassica ‘Polima’ CMS: developmental influences, Curr. Genet. 24 (1993) 316-322.

[10]

Y. L'Homme, R.J. Stahl, X.Q. Li, A. Hameed, G.G. Brown, Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene, Curr. Genet. 31 (1997) 325-335.

[11]

B. Jing, S. Heng, D. Tong, Z. Wan, T. Fu, J. Tu, C. Ma, B. Yi, J. Wen, J. Shen, A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development, J. Exp. Bot. 63 (2012) 1285-1295.

[12]

J.H. Dieterich, H.P. Braun, U.K. Schmitz, Alloplasmicmale sterility in Brassica napus (CMS “Tournefortii-Stiewe”) is associated with a special gene arrangement around a novel atp9 gene, Mol. Gen. Genet. 269 (2003) 723-731.

[13]

M. Landgren, M. Zetterstrand, E. Sundberg, K. Glimelius, Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3’ of the atp6 gene and a 32 kDa protein, Plant Mol. Biol. 32 (1996) 879-890.

[14]

K.P. Ashutosh, K.V. Dinesh, P.C. Sharma, S. Prakash, S.R. Bhat, A novel orf108 co-transcribed with the atpA gene is associated with cytoplasmic male sterility in Brassica juncea carrying Moricandia arvensis cytoplasm, Plant Cell Physiol. 49 (2008) 284-289.

[15]

M. Grelon, F. Budar, S. Bonhomme, G. Pelletier, Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids, Mol. Gen. Genet. 243 (1994) 540-547.

[16]

S. Krishnasamy, C.A. Makaroff, Characterization of the radish mitochondrial orfB locus: possible relationship with male sterility in Ogura radish, Curr. Genet. 24 (1993) 156-163.

[17]

J. Yang, X. Liu, X. Yang, M. Zhang, Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea, BMC Plant Biol. 10 (2010) 231.

[18]

N.A. Zhao, X. Xu, Y. Wamboldt, S.A. Mackenzie, X. Yang, Z. Hu, J. Yang, M. Zhang, MutS HOMOLOG1 silencing mediates ORF220 substoichiometric shifting and causes male sterility in Brassica juncea, J. Exp. Bot. 67 (2016) 435-444.

[19]

Y. Duroc, C. Gaillard, S. Hiard, M.C. Defrance, G. Pelletier, F. Budar, Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae, Biochimie 87 (2005) 1089-1100.

[20]

Q. Hu, S. Andersen, C. Dixelius, L. Hansen, Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool, Plant Cell Rep. 21 (2002) 147-152.

[21]

S. Sang, H. Cheng, D. Mei, L.i. Fu, H. Wang, J. Liu, W. Wang, Q.U. Zaman, K. Liu, Q. Hu, Complete organelle genomes of Sinapis arvensis and their evolutionary implications, Crop J. 8 (2020) 505-514.

[22]

S.F. Sang, D.S. Mei, J. Liu, Q.U. Zaman, H.Y. Zhang, M.Y. Hao, L. Fu, H. Wang, H.T. Cheng, Q. Hu, Organelle genome composition and candidate gene identification for Nsa cytoplasmic male sterility in Brassica napus, BMC Genomics 20 (2019) 813.

[23]

J. Kuhn, S. Binder, RT-PCR analysis of 5′ to 3′-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria, Nucleic Acids Res. 30 (2002) 439-446.

[24]

T. Zhou, W. Xu, A. Hirani, Z. Liu, P.A. Tuan, B.T. Ayele, F. Daayf, P. McVetty, R.W. Duncan, G. Li, Transcriptional insight into Brassica napus resistance genes LepR3 and Rlm2-mediated defense response against the Leptosphaeria maculans infection, Front. Plant Sci. 10 (2019) 823.

[25]

X. Ding, Q. Chen, C. Bao, A. Ai, Y. Zhou, S. Li, H. Xie, Y. Zhu, Y. Cai, X. Peng, Expression of a mitochondrial gene orfH79 from CMS-Honglian rice inhibits Escherichia coli growth via deficient oxygen consumption, SpringerPlus 5 (2016) 1125.

[26]

F. Liu, X. Xiong, L. Wu, D. Fu, A. Hayward, X. Zeng, Y. Cao, Y. Wu, Y. Li, G. Wu, X. Zhang, BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus, PLoS ONE 9 (2014) e110272.

[27]

S.D. Yoo, Y.H. Cho, J. Sheen, Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis, Nat. Protocols 2 (2007) 1565-1572.

[28]

M.P. Yamamoto, H. Shinada, Y. Onodera, C. Komaki, T. Mikami, T. Kubo, A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants, Plant J. 54 (2008) 1027-1036.

[29]

P. Bhatnagar-Mathur, R. Gupta, P.S. Reddy, B.P. Reddy, D.S. Reddy, C.V. Sameerkumar, R.K. Saxena, K.K. Sharma, A novel mitochondrial orf147 causes cytoplasmic male sterility in pigeonpea by modulating aberrant anther dehiscence, Plant Mol. Biol. 97 (2018) 131-147.

[30]

J.J. Ji, W. Huang, Z. Li, W.G. Chai, Y.X. Yin, D.W. Li, Z.H. Gong, Tapetum-specific expression of a cytoplasmic orf507 gene causes semi-male sterility in transgenic peppers, Front. Plant Sci. 6 (2015) 272.

[31]

H. Wintz, H.C. Chen, C.A. Sutton, C.A. Conley, A. Cobb, D. Ruth, M.R. Hanson, Expression of the CMS-associated urfS sequence in transgenic petunia and tobacco, Plant Mol. Biol. 28 (1995) 83-92.

[32]

S. He, A.R. Abad, S.B. Gelvin, S.A. Mackenzie, A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 11763-11768.

[33]

V. Arun, B. Kuriakose, V.V. Sridhar, G. Thomas, Transformation and analysis of tobacco plant var Petit havana with T-urf13 gene under anther-specific TA29 promoter, 3 Biotech 1 (2011) 73-82.

[34]

M.R. Hanson, S. Bentolila, Interactions of mitochondrial and nuclear genes that affect male gametophyte development, Plant Cell 16 (2004) 154-169.

[35]

P. Yi, L. Wang, Q. Sun, Y. Zhu, Discovery of mitochondrial chimeric-gene associated with cytoplasmic male sterility of HL-rice, Chin. Sci. Bull. 47 (2002) 744-747.

[36]

J.Y. Park, Y.P. Lee, J. Lee, B.S. Choi, S. Kim, T.J. Yang, Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in radish (Raphanus sativus L.) containing DCGMS cytoplasm, Theor. Appl. Genet. 126 (2013) 1763-1774.

[37]

R. Hans Köhler, R. Horn, A. Lössl, K. Zetsche, Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with the atpA gene, Mol. Gen. Genet. 227 (1991) 369-376.

[38]

H. Handa, J.M. Gualberto, J.M. Grienenberger, Characterization of the mitochondrial orfB gene and its derivative, orf224, a chimeric open reading frame specific to one mitochondrial genome of the “Polima” male-sterile cytoplasm in rapeseed (Brassica napus L.), Curr. Genet. 28 (1995) 546-552.

[39]

G. Zabala, S. Gabay-Laughnan, J.R. Laughnan, The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize, Genetics 147 (1997) 847-860.

[40]

D.H. Kim, J.G. Kang, B.D. Kim, Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.), Plant Mol. Biol. 63 (2007) 519-532.

[41]

G. Perrotta, T.M.R. Regina, L.R. Ceci, C. Quagliariello, Conservation of the organization of the mitochondrial nad3 and rps12 genes in evolutionarily distant angiosperms, Mol. Gen. Genet. 251 (1996) 326-337.

[42]

C.T. Rankin, M.T. Cutright, C.A. Makaroff, Characterization of the radish mitochondrial nad3/rps12 locus: analysis of recombination repeats and RNA editing, Curr. Genet. 29 (1996) 564-571.

[43]

J. Rasmussen, M.R. Hanson, A NADH dehydrogenase subunit gene is co-transcribed with the abnormal Petunia mitochondrial gene associated with cytoplasmic male sterility, Mol. Gen. Genet. 215 (1989) 332-336.

[44]

A.R. Fernie, F. Carrari, L.J. Sweetlove, Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport, Curr. Opin. Plant Biol. 7 (2004) 254-261.

[45]

P. Robles, V. Quesada, Emerging roles of mitochondrial ribosomal proteins in plant development, Int. J. Mol. Sci. 18 (2017) 2595.

[46]

D. Luo, H. Xu, Z. Liu, J. Guo, H. Li, L. Chen, C. Fang, Q. Zhang, M. Bai, N. Yao, H. Wu, H. Wu, C. Ji, H. Zheng, Y. Chen, S. Ye, X. Li, X. Zhao, R. Li, Y. Liu, A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice, Nat. Genet. 45 (2013) 573.

[47]

S. Heng, J. Gao, C. Wei, F. Chen, X. Li, J. Wen, B. Yi, C. Ma, J. Tu, T. Fu, J. Shen, Transcript levels of orf288 are associated with the hau cytoplasmic male sterility system and altered nuclear gene expression in Brassica juncea, J. Exp. Bot 69 (2018) 455-466.

[48]

J. Li, X. Dai, L. Li, Z. Jiao, Q. Huang, Metabolism of reactive oxygen species in cytoplasmic male sterility of rice by marking upmost pulvinus interval, Appl. Biochem. Biotechnol. 175 (2015) 1263-1269.

[49]

Z. Liu, X. Shi, S. Li, G. Hu, L. Zhang, X. Song, Tapetal-delayed programmed cell death (PCD) and oxidative stress-induced male sterility of Aegilops uniaristata cytoplasm in wheat, Int. J. Mol. Sci. 19 (2018) 1708.

[50]

H. Xie, X. Peng, M. Qian, Y. Cai, X. Ding, Q. Chen, Q. Cai, Y. Zhu, L. Yan, Y. Cai, The chimeric mitochondrial gene orf182 causes non-pollen-type abortion in Dongxiang cytoplasmic male-sterile rice, Plant J. 95 (2018) 715-726.

[51]

K. Wang, F. Gao, Y. Ji, Y. Liu, Z. Dan, P. Yang, Y. Zhu, S. Li, ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex III in Honglian cytoplasmic male sterile rice, New Phytol. 198 (2013) 408-418.

[52]

P. Touzet, E.H. Meyer, Cytoplasmic male sterility and mitochondrial metabolism in plants, Mitochondrion 19 (2014) 166-171.

[53]

D.R. Green, J.C. Reed, Mitochondria and apoptosis, Science 281 (1998) 1309-1312.

[54]

D.P. Maxwell, R. Nickels, L. McIntosh, Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence, Plant J. 29 (2002) 269-279.

[55]

N. Yao, Y. Tada, M. Sakamoto, H. Nakayashiki, P. Park, Y. Tosa, S. Mayama, Mitochondrial oxidative burst involved in apoptotic response in oats, Plant J. 30 (2002) 567-579.

[56]

S.Q. Li, C.X. Wan, J. Kong, Z.J. Zhang, Y.S. Li, Y.G. Zhu, Programmed cell death during microgenesis in a Honglian CMS line of rice is correlated with oxidative stress in mitochondria, Funct. Plant Biol. 31 (2004) 369-376.

[57]

C. Wan, S. Li, L. Wen, J. Kong, K. Wang, Y. Zhu, Damage of oxidative stress on mitochondria during microspores development in Honglian CMS line of rice, Plant Cell Rep. 26 (2007) 373-382.

The Crop Journal
Pages 1320-1329
Cite this article:
Sang S, Cheng H, Hao M, et al. Mitochondrial localization of ORF346 causes pollen abortion in alloplasmic male sterility. The Crop Journal, 2021, 9(6): 1320-1329. https://doi.org/10.1016/j.cj.2021.01.008

297

Views

4

Downloads

14

Crossref

13

Web of Science

14

Scopus

2

CSCD

Altmetrics

Received: 08 August 2020
Revised: 20 November 2020
Accepted: 29 January 2021
Published: 06 April 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return