AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Mechanisms of cadmium phytoremediation and detoxification in plants

Jin-Song Luoa,bZhenhua Zhanga,b( )
College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha 410128, Hunan, China
Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, Hunan, China
Show Author Information

Abstract

As a consequence of industrial development, soil Cd pollution leads to crop contamination by Cd, posing a threat to food safety and human health. Excessive accumulation of Cd in plants also inhibits their growth via oxidative stress damage to their photosynthetic systems. Through evolutionary selection, plants have developed a set of efficient strategies to respond to Cd in their environments. These include the accumulation and detoxification of heavy metals. Cd is absorbed by plant roots through the apoplastic and symplastic pathways and then translocated to plant shoots via xylem loading, long-distance transport, and phloem redistribution. Simultaneously, plants initiate a series of mechanisms to reduce Cd toxicity, including cell wall adsorption, cytoplasmic chelation, and vacuolar sequestration. This review summarizes current knowledge of Cd accumulation and detoxification in plants.

References

[1]

T.W. Lane, M.A. Saito, G.N. George, I.J. Pickering, R.C. Prince, F.M.M. Morel, A cadmium enzyme from a marine diatom, Nature 435 (2005) 42.

[2]

S. Kumar, A. Sharma, Cadmium toxicity: effects on human reproduction and fertility, Rev. Environ. Health 34 (2019) 327-338.

[3]

G. Genchi, M.S. Sinicropi, G. Lauria, A. Carocci, A. Catalano, The effects of cadmium toxicity, Int. J. Environ. Res. Public Health 17 (2020) 3782, https://doi.org/10.3390/ijerph17113782.

[4]

C. Baliardini, C.L. Meyer, P. Salis, P. Saumitou-Laprade, N. Verbruggen, Cation EXCHANGER1 cosegregates with cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis spp, Plant Physiol. 169 (2015) 549-559.

[5]

S. HE, X. YANG, Z. HE, V.C. BALIGAR, Morphological and physiological responses of plants to cadmium toxicity: a review, Pedosphere 27 (2017) 421-438.

[6]

A.A. Mohamed, A. Castagna, A. Ranieri, L. Sanità di Toppi, Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis, Plant Physiol. Biochem. 57 (2012) 15-22.

[7]

T. Sterckeman, S. Thomine, Mechanisms of cadmium accumulation in plants, Crit. Rev. Plant Sci. 39 (2020) 322-359.

[8]

S. Clemens, M.G. Aarts, M.S. Thomine, N. Verbruggen, Plant science: the key to preventing slow cadmium poisoning, Trends Plant Sci. 18 (2013) 92-99.

[9]

G. DalCorso, E. Fasani, A. Manara, G. Visioli, A. Furini, Heavy metal pollutions: state of the art and innovation in phytoremediation, Int. J. Mol. Sci. 20 (2019) 3412.

[10]

H. Ali, E. Khan, M.A. Sajad, Phytoremediation of heavy metals-concepts and applications, Chemosphere 91 (2013) 869-881.

[11]

D.E. Salt, M. Blaylock, N.P.B.A. Kumar, V. Dushenkov, B.D. Ensley, I. Chet, I. Raskin, Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants, Nat. Biotechnol. 13 (1995) 468-474.

[12]

J.M. Jacob, C. Karthik, R.G. Saratale, S.S. Kumar, D. Prabakar, K. Kadirvelu, A. Pugazhendhi, Biological approaches to tackle heavy metal pollution: a survey of literature, J. Environ. Manage. 217 (2018) 56-70.

[13]

N. Sarwar, M. Imran, M.R. Shaheen, W. Ishaque, M.A. Kamran, A. Matloob, A. Rehim, S. Hussain, Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives, Chemosphere 171 (2017) 710-721.

[14]

M. Cheraghi, B. Lorestani, N. Khorasani, N. Yousefi, M. Karami, Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals, Biol. Trace Elem. Res. 144 (2011) 1133-1141.

[15]

H. Sarma, Metal hyperaccumulation in plants: A review focusing on phytoremediation technology, J. Environ. Sci. Technol. 4 (2011) 118-138.

[16]

H. Jia, H. Wang, H. Lu, S. Jiang, M. Dai, J. Liu, C. Yan, Rhizodegradation potential and tolerance of Avicennia marina (Forsk.) Vierh in phenanthrene and pyrene contaminated sediments, Mar. Pollut. Bull. 110 (2016) 112-118.

[17]

J.S. Peng, Y.H. Guan, X.J. Lin, X.J. Xu, L. Xiao, H.H. Wang, S. Meng, Comparative understanding of metal hyperaccumulation in plants: a mini-review, Environ. Geochem. Health (2020), https://doi.org/10.1007/s10653-020-00533-2.

[18]

A.A. Dalvi, S.A. Bhalerao, Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism, Ann. Plant Sci. 2 (2013) 362-368.

[19]
W.A. Peer, I.R. Baxter, E.L. Richards, J.L. Freeman, A.S. Murphy, Phytoremediation and hyperaccumulator plants, in: M.J. Tamas, E. Martinoia (Eds.), Molecular Biology of Metal Homeostasis and Detoxification, Springer, Berlin, Germany, 2005, pp. 299–340.
[20]

S. Thakur, L. Singh, Z.A. Wahid, M.F. Siddiqui, S.M. Atnaw, M.F.M. Din, Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives, Environ. Monit. Assess. 188 (2016) 206.

[21]

Y.P. Tong, R. Kneer, Y.G. Zhu, Vacuolar compartmentalization:a second-generation approach to engineering plants for phytoremediation, Trends Plant Sci. 9 (2004) 7-9.

[22]

R.F. Jiang, D.Y. Ma, F.J. Zhao, S.P. McGrath, Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis), New Phytol. 167 (2005) 805-814.

[23]

S. Clemens, Molecular mechanisms of plant metal tolerance and homeostasis, Planta 212 (2001) 475-486.

[24]

M.L. Guerinot, The ZIP family of metal transporters, Biochim. Biophys. Acta 1465 (2000) 190-198.

[25]

G. Vert, N. Grotz, F. Dédaldéchamp, F. Gaymard, M.L. Guerinot, J.F. Briat, C. Curie, IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth, Plant Cell 14 (2002) 1223-1233.

[26]

Y. Ishimaru, M. Suzuki, T. Tsukamoto, K. Suzuki, M. Nakazono, T. Kobayashi, Y. Wada, S. Watanabe, S. Matsuhashi, M. Takahashi, H. Nakanishi, S. Mori, N.K. Nishizawa, Rice plants take up iron as an Fe3+phytosiderophore and as Fe2+, Plant J 45 (2006) 335-346.

[27]

H. Nakanishi, I. Ogawa, Y. Ishimaru, S. Mori, N.K. Nishizawa, Iron deficiency enhances cadmium uptake and translocation mediated by the Fe transporters OsIRT1 and OsIRT2 in rice, Soil Sci. Plant Nutr. 52 (2006) 464-469.

[28]

E. Lombi, K.L. Tearall, J.R. Howarth, F.-J. Zhao, M.J. Hawkesford, S.P. McGrath, Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens, Plant Physiol. 128 (2002) 1359-1367.

[29]

S. Plaza, K.L. Tearall, F.J. Zhao, P. Buchner, S.P. McGrath, M.J. Hawkesford, Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens, J. Exp. Bot. 58 (2007) 1717-1728.

[30]

L. Tan, M. Qu, Y. Zhu, C. Peng, J. Wang, D. Gao, C. Chen, ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in Zinc/Cadmium uptake, Plant Physiol. 183 (2020) 1235-1249.

[31]

V. Lanquar, S. Bolte, C. Alcon, D. Neumann, G. Vansuyt, C. Curie, S. Thomine, Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron, EMBO J. 24 (2005) 4041–4051.

[32]

V. Lanquar, M.S. Ramos, F. Lelièvre, Hélène Barbier-Brygoo, A. Krieger-Liszkay, U. Krämer, S. Thomine, Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency, Plant Physiol. 152 (2010) 1986-1999.

[33]

M. Pottier, R. Oomen, C. Picco, J. Giraudat, J. Scholz-Starke, P. Richaud, A. Carpaneto, S. Thomine, Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium, Plant J. 83 (2015) 625-637.

[34]

R. Takahashi, Y. Ishimaru, T. Senoura, H. Shimo, S. Ishikawa, T. Arao, H. Nakanishi, N.K. Nishizawa, The OsNRAMP1 iron transporter is involved in Cd accumulation in rice, J. Exp. Bot. 62 (2011) 4843–4850.

[35]

J.D. Chang, S. Huang, N. Yamaji, W. Zhang, J.F. Ma, F.J. Zhao, OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice, Plant Cell Environ. 43 (2020) 2476-2491.

[36]

S. Ishikawa, Y. Ishimaru, M. Igura, M. Kuramata, T. Abe, T. Senoura, Y. Hase, T. Arao, N.K. Nishizawa, H. Nakanishi, Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 19166-19171.

[37]

A. Sasaki, N. Yamaji, K. Yokosho, J.F. Ma, Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice, Plant Cell 24 (2012) 2155-2167.

[38]

D. Ueno, A. Sasaki, N. Yamaji, T. Miyaji, Y. Fujii, Y. Takemoto, S. Moriyama, J. Che, Y. Moriyama, K. Iwasaki, J.F. Ma, A polarly localized transporter for efficient manganese uptake in rice, Nat. Plants 1 (2015) 15170.

[39]

F. Peng, C. Wang, J. Zhu, J. Zeng, H. Kang, X. Fan, L. Sha, H. Zhang, Y. Zhou, Y. Wang, Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants, Planta 247 (2018) 1395-1406.

[40]

Y. Ding, S. Gong, Y. Wang, F. Wang, H. Bao, J. Sun, C. Cai, K. Yi, Z. Chen, C. Zhu, MicroRNA166 modulates cadmium tolerance and accumulation in rice, Plant Physiol. 177 (2018) 1691-1703.

[41]

S.D. Lim, J.G. Hwang, A.R. Han, Y.C. Park, C. Lee, Y.S. Ok, C.S. Jang, Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes, Plant Mol Biol. 85 (2014) 365-379.

[42]

R.F. Mills, G.C. Krijger, P.J. Baccarini, J.L. Hall, L.E. Williams, Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass, Plant J. 35 (2003) 164-176.

[43]

R.F. Mills, A. Francini, P.S.C. Ferreira da Rocha, P.J. Baccarini, M. Aylett, G.C. Krijger, L.E. Williams, The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels, FEBS Lett. 579 (2005) 783-791.

[44]

C.K.E. Wong, R.S. Jarvis, S.M. Sherson, C.S. Cobbett, Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, Arabidopsis thaliana, New Phytol. 181 (2009) 79-88.

[45]

C.K.E. Wong, C.S. Cobbett, HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana, New Phytol. 181 (2009) 71-78.

[46]

N. Satoh-Nagasawa, M. Mori, N. Nakazawa, T. Kawamoto, Y. Nagato, K. Sakurai, H. Takahashi, A. Watanabe, H. Akagi, Mutations in rice (Oryza sativa) Heavy Metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium, Plant Cell Physiol 53 (2012) 213-224.

[47]

R. Takahashi, Y. Ishimaru, H. Shimo, Y. Ogo, T. Senoura, N.K. Nishizawa, H. Nakanishi, The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice, Plant Cell Environ. 35 (2012) 1948-1957.

[48]

A. Papoyan, L.V. Kochian, Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase, Plant Physiol. 136 (3) (2004) 3814-3823.

[49]

M. Courbot, G. Willems, P. Motte, S. Arvidsson, N. Roosens, P. Saumitou-Laprade, N. Verbruggen, A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase, Plant Physiol. 144 (2) (2007) 1052-1065.

[50]

M. Hanikenne, I.N. Talke, M.J. Haydon, C. Lanz, A. Nolte, P. Motte, J. Kroymann, D. Weigel, U. Krämer, Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4, Nature 453 (7193) (2008) 391-395.

[51]

J.S. Luo, J. Huang, D.L. Zeng, J.S. Peng, G.B. Zhang, H.L. Ma, Y. Guan, H.Y. Yi, Y.L. Fu, B. Han, H.X. Lin, Q. Qian, J.M. Gong, A defensin-like protein drives cadmium efflux and allocation in rice, Nat. Commun. 9 (2018) 645.

[52]

J.S. Luo, Y. Xiao, J.Y. Yao, Z.M. Wu, Y. Yang, A.M. Ismail, Z.H. Zhang, Overexpression of a defensin-like gene CAL2 enhances cadmium accumulation in plants, Front. Plant Sci. 11 (2020) 217.

[53]

H. Yan, W. Xu, J. Xie, Y. Gao, L. Wu, L. Sun, L. Feng, X. Chen, T. Zhang, C. Dai, T. Li, X. Lin, Z. Zhang, X. Wang, F. Li, X. Zhu, J. Li, Z. Li, C. Chen, M. Ma, H. Zhang, Z. He, Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies, Nat. Commun. 12 (2019) 2562.

[54]

N. Yamaji, J. Xia, N. Mitani-Ueno, K. Yokosho, J. Feng Ma, Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2, Plant Physiol. 162 (2013) 927-939.

[55]

S. Uraguchi, T. Kamiya, T. Sakamoto, K. Kasai, Y. Sato, Y. Nagamura, A. Yoshida, J. Kyozuka, S. Ishikawa, T. Fujiwara, Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 20959-20964.

[56]

X. Hao, M. Zeng, J. Wang, Z. Zeng, J. Dai, Z. Xie, Y. Yang, L. Tian, L. Chen, D. Li, A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice, Front. Plant Sci. 9 (2018) 476.

[57]

L. Tan, Y. Zhu, T. Fan, C. Peng, J. Wang, L. Sun, C. Chen, OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice, Biochem. Biophys. Res. Commun. 512 (2019) 112-118.

[58]

W.-Y. Song, H.-S. Lee, S.-R. Jin, D. Ko, E. Martinoia, Y. Lee, G. An, S.-N. Ahn, Rice PCR1 influences grain weight and Zn accumulation in grains, Plant Cell Environ. 38 (2015) 2327-2339.

[59]

H. Shimo, Y. Ishimaru, G. An, T. Yamakawa, H. Nakanishi, N.K. Nishizawa, Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice, J. Exp. Bot. 62 (2011) 5727–34.

[60]

S. Uraguchi, N. Tanaka, C. Hofmann, K. Abiko, N. Ohkama-Ohtsu, M. Weber, T. Kamiya, Y. Sone, R. Nakamura, Y. Takanezawa, M. Kiyono, T. Fujiwara, S. Clemens, Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains, Plant Cell Physiol. 58 (2017) 1730–1742.

[61]

N. Das, S. Bhattacharya, S. Bhattacharyya, M.K. Maiti, Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses, Plant Mol. Biol. 94 (2017) 167-183.

[62]

J. Park, W. Song, D. Ko, Y. Eom, T.H. Hansen, M. Schiller, T.G. Lee, E. Martinoia, Y. Lee, The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury, Plant J. 69 (2012) 278-288.

[63]

P. Brunetti, L. Zanella, A. de. Paolis, D. Di. Litta, V. Cecchetti, G. Falasca, M. Barbieri, M.M. Altamura, P. Costantino, M. Cardarelli, Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis, J. Exp. Bot. 66 (2015) 3815–3829.

[64]

V. Korenkov, B. King, K. Hirschi, G.J. Wagner, Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L., Plant Biotechnol. J. 7 (2009) 219–226.

[65]

M. Morel, J. Crouzet, A. Gravot, P. Auroy, N. Leonhardt, A. Vavasseur, P. Richaud, AtHMA3, a P1BCRITICAL REVIEWS IN PLANT SCIENCES 31 ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis, Plant Physiol. 149 (2009) 894-904.

[66]

D.Y. Chao, A. Silva, I. Baxter, Y.S. Huang, M. Nordborg, J. Danku, B. Lahner, E. Yakubova, D.E. Salt, Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana, PLoS Genet. 8 (2012) 9.

[67]

D. Ueno, N. Yamaji, I. Kono, C.F. Huang, T. Ando, M. Yano, J.F. Ma, Gene limiting cadmium accumulation in rice, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 16500-16505.

[68]

H. Miyadate, S. Adachi, A. Hiraizumi, K. Tezuka, N. Nakazawa, T. Kawamoto, K. Katou, I. Kodama, K. Sakurai, H. Takahashi, OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating Cd efflux into vacuoles, New Phytol. 189 (2011) 190-199.

[69]

D. Ueno, M.J. Milner, N. Yamaji, K. Yokosho, E. Koyama, M. Clemencia Zambrano, M. Kaskie, S. Ebbs, L.V. Kochian, J.F. Ma, Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens, Plant J. 66 (2011) 852-862.

[70]

J. Zhang, M. Zhang, M.J.I. Shohag, S. Tian, H. Song, Y. Feng, X. Yang, Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance, Planta 243 (2016) 577-589.

[71]

H. Liu, H. Zhao, L. Wu, A. Liu, F.J. Zhao, W. Xu, Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola, New Phytol. 215 (2017) 687-698.

[72]

E. Grill, E.L. Winnacker, M.H. Zenk, Phytochelatins: the principal heavy-metal complexing peptides of higher plants, Science 230 (1985) 674-676.

[73]

E. Grill, E.L. Winnacker, M.H. Zenk, Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase), Proc. Natl. Acad. Sci. U. S. A. 86 (1989) 6838-6842.

[74]

S. Clemens, E.J. Kim, D. Neumann, J.I. Schroeder, Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast, Embo J. 18 (1999) 3325-3333.

[75]

S.-B. Ha, A.P. Smith, R. Howden, W.M. Dietrich, S. Bugg, M.J. O’Connell, P.B. Goldsbrough, C.S. Cobbett, Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe, Plant Cell 11 (1999) 1153-1163.

[76]

O.K. Vatamaniuk, S. Mari, Y.P. Lu, P.A. Rea, Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides, J. Biol. Chem. 275 (2000) 31451-31459.

[77]

W.E. Rauser, Phytochelatins and related peptides, structure, biosynthesis, and function, Plant Physiol. 109 (1995) 1141-1149.

[78]

S. Fu, Y. Lu, X. Zhang, G. Yang, D. Chao, Z. Wang, M. Shi, J. Chen, D.Y. Chao, R. Li, J.F. Ma, J. Xia, The ABC transporter ABCG36 is required for cadmium tolerance in rice, J. Exp. Bot. 70 (2019) 5909–5918.

[79]

K. Oda, M. Otani, S. Uraguchi, T. Akihiro, T. Fujiwara, Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast, Biosci. Biotechnol. Biochem. 75 (2011) 1211-1213.

[80]

H.X. Lan, Z.F. Wang, Q.H. Wang, M.M. Wang, Y.M. Bao, J. Huang, H.S. Zhang, Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.), Mol. Biol. Rep. 40 (2013) 1201-1210.

[81]

C. Cobbett, P. Goldsbrough, Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant Biol. 53 (2002) 159-182.

[82]

A.M. Zimeri, O.P. Dhankher, B. McCaig, R.B. Meagher, The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation, Plant Mol. Biol. 58 (2005) 839-855.

[83]

W.-J. Guo, M. Meetam, P.B. Goldsbrough, Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance, Plant Physiol. 146 (4) (2008) 1697-1706.

[84]

Y. Ren, Y. Liu, H. Chen, G. Li, X. Zhang, J. Zhao, Type 4 metallothionein genes are involved in regulating Zn ion accumulation in late embryo and in controlling early seedling growth in Arabidopsis, Plant Cell Environ. 35 (2012) 770–789.

[85]

M. R. Benatti, N. Yookongkaew, M. Meetam, W.J. Guo, N. Punyasuk, S. AbuQamar, P. Goldsbrough, Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis, New Phytol. 202 (2014) 940-951.

[86]

J.S. Peng, G. Ding, S. Meng, H.Y. Yi, J.M. Gong, Enhanced metal tolerance correlates with heterotypic variation in SpMTL, a metallothionein-like protein from the hyperaccumulator Sedum plumbizincicola, Plant Cell Environ. 40 (2017) 1368-1378.

[87]

M. Kuramata, S. Masuya, Y. Takahashi, E. Kitagawa, C. Inoue, S. Ishikawa, S. Youssefian, T. Kusano, Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation, Plant Cell Physiol. 50 (2009) 106-117.

[88]

D. Shim, J.U. Hwang, J. Lee, S. Lee, Y. Choi, G. An, E. Martinoia, Y. Lee, Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice, Plant Cell 21 (2009) 4031-4043.

[89]

Y. Zhang, F.B.L. Cougnon, Y.A. Wanniarachchi, J.A. Hayden, E.M. Nolan, Reduction of human defensin 5 affords a high-affinity zincchelating peptide, ACS Chem. Biol. 8 (9) (2013) 1907-1911.

[90]

M. Mirouze, J. Sels, O. Richard, P. Czernic, S. Loubet, A. Jacquier, I.E. François, B.P. Cammue, M. Lebrun, P. Berthomieu, L. Marquès, A putative novel role for plant defensins: a defensin from the zinc hyperaccumulating plant, Arabidopsis halleri, confers zinc tolerance, Plant J. 47 (2006) 329-342.

[91]

Z. Shahzad, V. Ranwez, C. Fizames, L. Marquès, B. Le Martret, J. Alassimone, C. Godé, E. Lacombe, T. Castillo, P. Saumitou-Laprade, P. Berthomieu, F. Gosti, Plant Defensin type 1 (PDF1): protein promiscuity and expression variation within the Arabidopsis genus shed light on zinc tolerance acquisition in Arabidopsis helleri, New Phytol. 200 (2013) 820-833.

[92]

N.N. Nguyen, V. Ranwez, D. Vile, M.C. Soulié, A. Dellagi, D. Expert, F. Gosti, Evolutionary tinkering of the expression of PDF1s suggests their joint effect on zinc tolerance and the response to pathogen attack, Front. Plant Sci. 11 (2014) 70.

[93]

O. Mith, A. Benhamdi, T. Castillo, M. Bergé, C.W. MacDiarmid, J. Steffen, D.J. Eide, V. Perrier, M. Subileau, F. Gosti, P. Berthomieu, L. Marquès, The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells, Microbiologyopen 4 (2015) 409-422.

[94]

J.S. Luo, T. Gu, Y. Yang, Z. Zhang, A non-secreted plant defensin AtPDF2.6 conferred cadmium tolerance via its chelation in Arabidopsis, Plant Mol. Biol. 100 (2019) 561-569.

[95]

J. Luo, Y. Yang, T. Gu, Z. Wu, Z. Zhang, The Arabidopsis defensin gene AtPDF2.5 mediates cadmium tolerance and accumulation, Plant Cell Environ. 42 (2019) 2681-2695.

[96]

J.S. Luo, Z.H. Zhang, Proteomic changes in the xylem sap of Brassica napus under cadmium stress and functional validation, BMC Plant Biol. 19 (2019) 280.

[97]

R.J. Haynes, Haynes Ion exchange properties of roots and ionic interactions within the root apoplasm: their role in ion accumulation by plants, Bot. Rev. 46 (1980) 75-99.

[98]

C. Grignon, H. Sentenac, pH and ionic conditions in the apoplast, Annu. Rev. Plant Physiol. 42 (1991) 103-128.

[99]

S.S. Sharma, K.J. Dietz, T. Mimura, Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants, Plant Cell Environ. 39 (2016) 1112-1126.

[100]

J.S. Peng, Y.J. Wang, G. Ding, H.L. Ma, Y.J. Zhang, J.M. Gong, A pivotal role of cell wall in cadmium accumulation in the crassulaceae hyperaccumulator sedum plumbizincicola, Mol. Plant 10 (2017) 771-774.

[101]

A. Gutsch, S. Zouaghi, J. Renaut, A. Cuypers, J.F. Hausman, K. Sergeant, Changes in the proteome of leaves in response to long-term cadmium exposure using a cell-wall targeted approach, Int. J. Mol. Sci. 19 (2018) 2498.

[102]

F. Paynel, A. Schaumann, M. Arkoun, O. Douchiche, C. Morvan, Temporal regulation of cell-wall pectin methylesterase and peroxidase isoforms in cadmium-treated flax hypocotyl, Ann. Bot. 104 (2009) 1363–1372.

[103]

M.T. Kartel, L.A. Kupchik, B.K. Veisov, Evaluation of pectin binding of heavy metal ions in aqueous solutions, Chemosphere 38 (1999) 2591-2596.

[104]

X. Wu, H. Song, C. Guan, Z. Zhang, Boron alleviates cadmium toxicity in Brassica napus by promoting the chelation of cadmium onto the root cell wall components, Sci. Total Environ. 1 (2020) 138833.

[105]

X. Wu, H. Song, C. Guan, Z. Zhang, Boron mitigates cadmium toxicity to rapeseed (Brassica napus) shoots by relieving oxidative stress and enhancing cadmium chelation onto cell walls, Environ Pollut. 263 (2020) 114546.

[106]

Z.H. Zhang, T. Zhou, T.J. Tang, H.X. Song, C.Y. Guan, J.Y. Huang, Y.P. Hua, A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity, J. Exp. Bot. 15 (2019) 5437–5455.

[107]

Y. Xiao, X. Wu, D. Liu, J. Yao, G. Liang, H. Song, A.M. Ismail, J.S. Luo, Z. Zhang, Cell wall polysaccharide-mediated cadmium tolerance between two Arabidopsis thaliana ecotypes, Front. Plant Sci. 13 (2020) 473.

[108]

H.L. Xie, R.F. Jiang, F.S. Zhang, S.P. McGrath, F.J. Zhao, Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens, Plant Soil 318 (2009) 205-215.

[109]

B.F. Luo, S.T. Du, K.X. Lu, W.J. Liu, X.Y. Lin, C.W. Jin, Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants, J. Exp. Bot. 63 (2012) 3127-3136.

[110]

P. Hu, Y.G. Yin, S. Ishikawa, N. Suzui, N. Kawachi, S. Fujimaki, M. Igura, C. Yuan, J. Huang, Z. Li, T. Makino, Y. Luo, P. Christie, L. Wu, Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola, Environ. Sci. Pollut. Res. Int. 20 (2013) 6306-6316.

[111]

J.Y. Li, Y.L. Fu, S.M. Pike, J. Bao, W. Tian, Y. Zhang, C.Z. Chen, Y. Zhang, H.M. Li, J. Huang, L.G. Li, J.I. Schroeder, W. Gassmann, J.M. Gong, The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance, Plant Cell 22 (2010) 1633-1646.

[112]

C.Z. Chen, X.F. Lv, J.Y. Li, H.Y. Yi, J.M. Gong, Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance, Plant Physiol. 159 (2012) 1582-1590.

[113]

S. Jian, J.S. Luo, Q. Liao, Q. Liu, C. Guan, Z. Zhang, NRT1.1 regulates nitrate allocation and cadmium tolerance in Arabidopsis, Front. Plant Sci. 27 (2019) 384.

[114]

Q. Liao, S.F. Jian, H.X. Song, C.Y. Guan, J.E. Lepo, A.M. Ismail, Z.H. Zhang, Balance between nitrogen use efficiency and cadmium tolerance in Brassica napus and Arabidopsis thaliana, Plant Sci. 284 (2019) 57-66.

[115]

Q.Q. Mao, M.Y. Guan, K.X. Lu, S.T. Du, S.K. Fan, Y.Q. Ye, X.Y. Lin, C.W. Jin, Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis, Plant Physiol. 166 (2014) 934-944.

[116]

M.F. Rahman, A. Ghosal, M.F. Alam, A.H. Kabir, Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon, Ecotoxicol. Environ. Saf. 135 (2017) 165-172.

[117]

Y. Liang, J.W.C. Wong, L. Wei, Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil, Chemosphere 58 (2005) 475-483.

[118]

J.F. Shao, J. Che, N. Yamaji, R.F. Shen, J.F. Ma, Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice, J. Exp. Bot. 68 (2017) 5641–5651.

[119]

M.A. Farooq, A. Detterbeck, S. Clemens, K.J. Dietz, Silicon-induced reversibility of cadmium toxicity in rice, J. Exp. Bot. 67 (2016) 3573-3585.

[120]

X.E. Yang, X.X. Long, H.B. Ye, Z.L. He, D.V. Calvert, P.J. Stoffella, Stoffella Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species, Plant Soil 259 (2004) 181-189.

[121]

Y.H. Xiong, X.E. Yang, Z.Q. Ye, Z.L. He, Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance, J. Environ. Sci. Heal. 39 (2004) 2925-2940.

[122]

K. Peng, C. Luo, W. You, C. Lian, X. Li, Z. Shen, Manganese uptake and interactions with cadmium in the hyperaccumulator-Phytolacca americana L., J. Hazard Mater. 154 (2008) 674-681.

[123]

H. Kubota, C. Takenaka, Field note: Arabis gemmifera is a hyperaccumulator of Cd and Zn, Int. J. Phytoremediat 5 (2003) 197-201.

[124]

L. Buendía-González, J. Orozco-Villafuerte, F. Cruz-Sosa, C.E. Barrera-Díaz, E.J. Vernon-Carter, Prosopis laevigata a potential chromium (Ⅵ) and cadmium (Ⅱ) hyperaccumulator desert plant, Bioresour. Technol. 101 (2010) 5862-5867.

[125]

G. Duan, G. Shao, Z. Tang, H. Chen, B. Wang, Z. Tang, Y. Yang, Y. Liu, F.J. Zhao, Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars, Rice 10 (2017) 9.

[126]

T. Morishita, N. Fumoto, T. Yoshizawa, K. Kagawa, Varietal differences in cadmium levels of rice grains of japonica, indica, javanica, and hybrid varieties produced in the same plot of a field, Soil Sci. Plant Nutr. 33 (1987) 629-637.

[127]

J. Liu, K. Li, J. Xu, J. Liang, X. Lu, J. Yang, Q. Zhu, Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes, Field Crops Res. 83 (2003) 271-281.

[128]

J. He, C. Zhu, Y. Ren, Y. Yan, D. Jiang, Genotypic variation in grain cadmium concentration of lowland rice, J. Plant Nutr. Soil Sci. 169 (2006) 711-716.

[129]

S. Uraguchi, S. Mori, M. Kuramata, A. Kawasaki, T. Arao, S. Ishikawa, Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice, J. Exp. Bot. 60 (2009) 2677–2688.

[130]

J. Shi, L. Li, G. Pan, Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil, J Environ. Sci. 21 (2009) 168-172.

[131]

L. Sun, X. Xu, Y. Jiang, Q. Zhu, F. Yang, J. Zhou, Y. Yang, Z. Huang, A. Li, L. Chen, W. Tang, G. Zhang, J. Wang, G. Xiao, D. Huang, C. Chen, Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice, Front. Plant Sci. 7 (2016) 1407.

[132]

M. Zhang, S.R.M. Pinson, L. Tarpley, X.-Y. Huang, B. Lahner, E. Yakubova, I. Baxter, M.L. Guerinot, D.E. Salt, Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain, Theor. Appl. Genet. 127 (2014) 137-165.

[133]

M. Yang, K. Lu, F.J. Zhao, W. Xie, P. Ramakrishna, G. Wang, Q. Du, L. Liang, C. Sun, H. Zhao, Z. Zhang, Z. Liu, J. Tian, X.Y. Huang, W. Wang, H. Dong, J. Hu, L. Ming, Y. Xing, G. Wang, J. Xiao, D.E. Salt, X. Lian, Lian X, Genome-wide association studies reveal the genetic basis of ionomic variation in rice, Plant Cell 30 (2018) 2720-2740.

[134]

Y. Tan, L. Sun, Q. Song, D. Mao, J. Zhou, Y. Jiang, J. Wang, T. Fan, Q. Zhu, D. Huang, H. Xiao, C. Chen, Genetic architecture of subspecies divergence in trace mineral accumulation and elemental correlations in the rice grain, Theor. Appl. Genet. 133 (2020) 529-545.

[135]

D. Ueno, I. Kono, K. Yokosho, T. Ando, M. Yano, J.F. Ma, A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa), New Phytol. 182 (2009) 644-653.

[136]

S. Ishikawa, T. Abe, M. Kuramata, M. Yamaguchi, T. Ando, T. Yamamoto, M. Yano, A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7, J. Exp. Bot. 61 (2010) 923–934.

[137]

X. Pan, Y. Li, W. Liu, S. Liu, J. Min, H. Xiong, Z. Dong, Y. Duan, Y. Yu, X. Li, QTL mapping and candidate gene analysis of cadmium accumulation in polished rice by genome-wide association study, Sci Rep. 16 (2020) 11791.

[138]

K. Tezuka, H. Miyadate, K. Katou, I. Kodama, S. Matsumoto, T. Kawamoto, S. Masaki, H. Satoh, M. Yamaguchi, K. Sakurai, H. Takahashi, N. Satoh-Nagasawa, A. Watanabe, T. Fujimura, H. Akagi, A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku, Theor. Appl. Genet. 120 (2010) 1175-1182.

[139]

S. Ishikawa, N. Ae, M. Yano, Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa), New Phytol. 168 (2005) 345-350.

[140]

J.Q. Zhou, Y.R. Jiang, X.Q. Ming, J.R. Wang, L. Sun, Introgressing the allelic variation of a major locus in reducing the grain cadmium accumulation in indica rice hybrids, Mol. Breed. 39 (2019) 84.

[141]

C. Yu, C. Sun, C. Shen, S. Wang, F. Liu, Y. Liu, Y. Chen, C. Li, Q. Qian, B. Aryal, M. Geisler, A. Jiang, Y. Qi, The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.), Plant J. 83 (2015) 818-830.

[142]

B.Q. Zhang, X.S. Liu, S.J. Feng, Y.N. Zhao, L.L. Wang, J.K. Rono, H. Li, Z.M. Yang, Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop, Chemosphere 247 (2020) 125958.

[143]

L. Tang, B. Mao, Y. Li, Q. Lv, L. Zhang, C. Chen, H. He, W. Wang, X. Zeng, Y. Shao, Y. Pan, Y. Hu, Y. Peng, X. Fu, H. Li, S. Xia, B. Zhao, Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield, Sci. Rep. 31 (2017) 14438.

[144]

C. Lu, L. Zhang, Z. Tang, X.Y. Huang, J.F. Ma, F.J. Zhao, Producing cadmium-free indica rice by overexpressing OsHMA3, Environ Int. 126 (2019) 619-626.

[145]

A. Sasaki, N. Yamaji, J.F. Ma, Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice, J. Exp. Bot. 65 (2014) 6013–6021.

The Crop Journal
Pages 521-529
Cite this article:
Luo J-S, Zhang Z. Mechanisms of cadmium phytoremediation and detoxification in plants. The Crop Journal, 2021, 9(3): 521-529. https://doi.org/10.1016/j.cj.2021.02.001

174

Views

4

Downloads

82

Crossref

69

Web of Science

81

Scopus

3

CSCD

Altmetrics

Received: 23 December 2020
Revised: 03 February 2021
Accepted: 17 March 2021
Published: 26 March 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return