AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Short Communication | Open Access

Overexpression of a BRASSINAZOLE RESISTANT 1 homolog attenuates drought tolerance by suppressing the expression of PLETHORA-LIKE 1 in Setaria italica

Zhiying ZhaoaSha TangbWei LicXiaorui YangdRuiju WangaXianmin Diaob,c( )Wenqiang Tanga( )
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Foxtail Millet Improvement Center of China, Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Science, Shijiazhuang 050031, Hebei, China
College of Bioscience & Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
Show Author Information

Abstract

Two potential BRASSINAZOLE RESISTANT 1 (BZR1) homologs were downregulated by brassinosteroids (BRs) in Setaria italica roots. Functional analysis showed that BR regulates the dephosphorylation and nuclear localization of SiBZR1 and that SiBZR1 binds conserved BZR1-recognizing cis elements. In comparison with the wild type, SiBZR1-overexpressing S. italica seedlings were more sensitive to BR-inhibited primary root growth and drought stress, indicating that SiBZR1 is a positive regulator of BR signaling and a negative regulator of drought tolerance in S. italica. PLETHORA-LIKE 1 (SiPLT-L1) was found to be a direct target gene of SiBZR1 in S. italica roots. The expression of SiPLT-L1 was downregulated by SiBZR1. SiPLT-L1-overexpressing S. italica was less sensitive to BR-inhibited root growth and more tolerant to drought stress, possibly owing to the upregulation of drought-inducible Dehydrin-family genes.

References

[1]

C.J. Yang, C. Zhang, Y.N. Lu, J.Q. Jin, X.L. Wang, The mechanisms of brassinosteroids action: from signal transduction to plant development, Mol. Plant 4 (2011) 588–600.

[2]

W. Wang, M.Y. Bai, Z.Y. Wang, The brassinosteroid signaling network-a paradigm of signal integration, Curr. Opin. Plant Biol. 21 (2014) 147–153.

[3]

J.X. He, J.M. Gendron, Y. Yang, J. Li, Z.Y. Wang, The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 10185–10190.

[4]

Y. Yin, Z.Y. Wang, S. Mora-Garcia, J. Li, S. Yoshida, T. Asami, J. Chory, BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation, Cell 109 (2002) 181–191.

[5]

G. Vert, J. Chory, Downstream nuclear events in brassinosteroid signaling, Nature 441 (2006) 96–100.

[6]

S.S. Gampala, T.W. Kim, J.X. He, W. Tang, Z. Deng, M.Y. Bai, S. Guan, S. Lalonde, Y. Sun, J.M. Gendron, H. Chen, N. Shibagaki, R.J. Ferl, D. Ehrhardt, K. Chong, A.L. Burlingame, Z.Y. Wang, An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis, Dev. Cell 13 (2007) 177–189.

[7]

P. Peng, Z. Yan, Y. Zhu, J. Li, Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome mediated protein degradation, Mol. Plant 1 (2008) 338–346.

[8]

J.Y. Zhu, Y. Li, D.M. Cao, H. Yang, E. Oh, Y. Bi, S. Zhu, Z.Y. Wang, The F-box protein KIB1 mediates brassinosteroid-induced inactivation and degradation of GSK3-like kinases in Arabidopsis, Mol. Cell 66 (2017) 648–657.

[9]

W. Tang, M. Yuan, R. Wang, Y. Yang, C. Wang, J.A. Oses-Prieto, T.W. Kim, H.W. Zhou, Z. Deng, S.S. Gampala, J.M. Gendron, E.M. Jonassen, C. Lillo, A. Delong, A.L. Burlingame, Y. Sun, Z.Y. Wang, PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1, Nat. Cell Biol. 13 (2011) 124–131.

[10]

Y. Sun, X.Y. Fan, D.M. Cao, W. Tang, K. He, J.Y. Zhu, J.X. He, M.Y. Bai, S. Zhu, E. Oh, S. Patil, T.W. Kim, H. Ji, W.H. Wong, S.Y. Rhee, Z.Y. Wang, Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis, Dev. Cell 19 (2010) 765–777.

[11]

S. Tang, L. Li, Y. Wang, Q. Chen, W. Zhang, G. Jia, H. Zhi, B. Zhao, X. Diao, Genotype specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses), Sci. Rep. 7 (2017) 10009.

[12]

M. Zhao, S. Tang, H. Zhang, M. He, J. Liu, H. Zhi, Y.i. Sui, X. Liu, G. Jia, Z. Zhao, J. Yan, B. Zhang, Y. Zhou, J. Chu, X. Wang, B. Zhao, W. Tang, J. Li, C. Wu, X. Liu, X. Diao, DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 21766–21774.

[13]

Y.T. Zhong, X.Y. Yuan, Z. Liu, J.Y. Xu, F.Y. Wen, M.T. Zhang, L. Huang, Y.Y. Wen, S.Q. Dong, L.G. Zhang, P.Y. Guo, Effects of brassinolide on agronomic and physiological properties of S. italica, Crops 165 (2015) 124-128 (in Chinese with English abstract).

[14]

J. Yang, S. Thames, N.B. Best, H. Jiang, P. Huang, B.P. Dilkes, A.L. Eveland, Brassinosteroids modulate meristem fate and differentiation of unique inflorescence morphology in Setaria viridis, Plant Cell 30 (2018) 48–66.

[15]

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, S.L. Salzberg, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol. 14 (2013) R36.

[16]

S. Anders, P.T. Pyl, W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics 31 (2015) 166–169.

[17]

X. Yang, Y. Bai, J. Shang, R. Xin, W. Tang, The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1, Plant Cell Environ. 39 (2016) 1994–2003.

[18]

L. Santuari, G.F. Sanchez-Perez, M. Luijten, B. Rutjens, I. Terpstra, L. Berke, M. Gorte, K. Prasad, D. Bao, J. Timmermans-Hereijgers, K. Maeo, K. Nakamura, A. Shimotohno, A. Pencik, O. Novak, K. Ljung, S.V. Heesch, E.D. Bruijn, E. Cuppen, V. Willemsen, A.P. Mahonen, W. Luokowitz, B. Snel, D.D. Ridder, B. Scheres, R. Heidstra, The PLETHORA gene regulatory network guides growth and cell differentiation in Arabidopsis root, Plant Cell 28 (2016) 2937–2951.

[19]

J. Chaiwanon, Z.Y. Wang, Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots, Curr. Biol. 25 (2015) 1–12.

[20]

M. Priya, O.P. Dhanker, K.H.M. Siddique, B. HanumanthaRao, R.M. Nair, S. Pandey, S. Singh, R.K. Varshney, P.V.V. Prasad, H. Nayyar, Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops, Theor. Appl. Genet. 132 (2019) 1607–1638.

[21]

J. Sebastian, M.C. Yee, W. Goudinho Viana, R. Rellán-Álvarez, M. Feldman, H.D. Priest, C. Trontin, T. Lee, H. Jiang, I. Baxter, T.C. Mockler, F. Hochholdinger, T.P. Brutnell, J.R. Dinneny, Grasses suppress shoot-borne roots to conserve water during drought, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 8861–8866.

The Crop Journal
Pages 1208-1213
Cite this article:
Zhao Z, Tang S, Li W, et al. Overexpression of a BRASSINAZOLE RESISTANT 1 homolog attenuates drought tolerance by suppressing the expression of PLETHORA-LIKE 1 in Setaria italica. The Crop Journal, 2021, 9(5): 1208-1213. https://doi.org/10.1016/j.cj.2021.02.006

266

Views

6

Downloads

12

Crossref

10

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 29 November 2020
Revised: 21 January 2021
Accepted: 17 March 2021
Published: 26 March 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return