AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Development of diagnostic markers for a wheat leaf rust resistance gene Lr42 using RNA-sequencing

Yang Liua,bHui ChenbChunxin Lib,cLirong Zhangb,dMingqin ShaobYuhui Pangb,eXiangyang XufGuihua Baib,g( )
Institute of South Subtropical Crops, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, Guangdong, China
Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
Henan Academy of Agricultural Science, Zhengzhou 450002, Henan, China
College of Plant Protection, Hebei Agricultural University, Baoding 071000, Hebei, China
College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
USDA-ARS Wheat, Peanut, and Other Field Crop Research Unit, Stillwater, OK 74075, USA
USDA-ARS, Hard Winter Wheat Genetic Research Unit, Manhattan, KS 66506, USA
Show Author Information

Abstract

Wheat leaf rust is a prevalent foliar disease in wheat worldwide. Growing resistant cultivars is an effective strategy to minimize the impact of leaf rust on yield and grain quality. Lr42 is a leaf rust resistance gene identified from Aegilops tauschii and is still effective against current predominant leaf rust races in the United States and many other countries. In this study, we developed diagnostic DNA markers for Lr42 using the sequence polymorphisms of a differentially expressed gene (TaRPM1) encoding a putative NB-ARC protein in the Lr42 candidate region identified by RNA-sequencing of two near-isogenic lines contrasting in Lr42 alleles. Markers were designed based on a deletion mutation and a single nucleotide polymorphism (SNP) in the gene. Haplotype analyses of the newly developed markers in the three diversity panels demonstrated that they are diagnostic for Lr42, and superior to previously used markers in selection accuracy. These markers have the advantages of low cost and easy assay, and they are suitable for marker-assisted selection in breeding programs with either high- or low-throughput marker screening facilities.

References

[1]

W. Bushuk, Wheat breeding for end-product use, Euphytica 100 (1998) 137-145.

[2]

J.A. Kolmer, Genetics of resistance to wheat leaf rust, Ann. Rev. Phytopathol. 34 (1) (1996) 435-455.

[3]

M.H. Khan, A. Bukhari, Z.A. Dar, S.M. Rizvi, Status and strategies in breeding for rust resistance in wheat, Agric. Sci. 4 (2013) 292-301.

[4]

D. Singh, V. Mohler, R.F. Park, Discovery, characterization and mapping of wheat leaf rust resistance gene Lr71, Euphytica 190 (2013) 131-136.

[5]

J.Z. Wang, L.Z. Shi, L. Zhu, Z.K. Ren, Z.H. Kang, X. Li, D.Q. Liu, Molecular mapping of QTL for leaf rust resistance in Chinese wheat cultivar Weimai 8, J. Plant Genet. Res. 16 (2015) 868-871.

[6]

M.K. Das, S. Rajaram, C.C. Mundt, W.E. Kronstad, R.P. Singh, Inheritance of slow rusting resistance in wheat, Crop Sci. 32 (1992) 1452-1456.

[7]
R.A. McIntosh, J. Dubcovsky, W.J. Rogers, C. Morris, R. Appels, X.C. Xia, Catalogue of gene symbols for wheat: 2015–2016 supplement, 2016, https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf.
[8]

J.A. Kolmer, Z. Su, A. Bernardo, G. Bai, S. Chao, A backcross line of Thatcher wheat with adult plant leaf rust resistance derived from Duster wheat has Lr46 and Lr77, Phytopathology 109 (2019) 127-132.

[9]

J.A. Kolmer, A. Bernardo, G. Bai, M.J. Hayden, S. Chao, Adult plant leaf rust resistance derived from Toropi wheat is conditioned by Lr78 and three minor QTL, Phytopathology 108 (2018) 246-253.

[10]

P. Prasad, S. Savadi, S.C. Bhardwaj, P.K. Gupta, The progress of leaf rust research in wheat, Fungal Biol. 124 (2020) 537-550.

[11]

W. Liu, M. Frick, R. Huel, C.L. Nykiforuk, X. Wang, D.A. Gaudet, F. Eudes, R.L. Conner, A. Kuzyk, Q. Chen, Z. Kang, A. Laroche, The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC–NBS–LRR sequence in wheat, Mol. Plant 7 (2014) 1740-1755.

[12]

P.L. Dyck, The association of gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat, Genome 29 (1987) 67-469.

[13]

R.P. Singh, K.A. Mujeeb, E.J. Huerta, Lr46: A gene conferring slow rusting resistance to leaf rust in wheat, Phytopathology 88 (1998) 890-894.

[14]

S.A. Herrera-Foessel, E.S. Lagudah, J. Huerta-Espino, M.J. Hayden, H.S. Bariana, D. Singh, R.P. Singh, New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked, Theor. Appl. Genet. 122 (2011) 239-249.

[15]

S.A. Herrera-Foessel, R.P. Singh, E.J. Huerta, G.M. Rosewarne, S.K. Periyannan, L. Viccars, V. Calvo-Salazar, C. Lan, E.S. Lagudah, Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat, Theor. Appl. Genet. 124 (2012) 1475-1486.

[16]

M.D. Bolton, J.A. Kolmer, D.F. Garvin, Wheat leaf rust caused by Puccinia triticina, Mol. Plant Pathol. 9 (2008) 563-575.

[17]

J.A. Kolmer, Y. Jin, D.L. Long, Wheat leaf and stem rust in the United States, Aust. J. Agric. Res. 58 (2007) 631-638.

[18]

B.S. Gill, B. Friebe, J.W. Raupp, D.L. Wilson, T.S. Cox, R.G. Sears, G.L. Brown-Guedira, A.K. Fritz, Wheat genetics resource center: the first 25 years, Adv. Agron. 1 (2006) 73-136.

[19]

T.S. Cox, W.J. Raupp, B.S. Gill, Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat, Crop Sci. 34 (1994) 339-343.

[20]

R.K. Bacon, J.T. Kelly, E.A. Milus, C.E. Parsons, Registration of soft wheat germplasm AR93005 resistant to leaf rust, Crop Sci. 46 (2006) 1398-1399.

[21]

R.P. Singh, J. Huerta-Espino, R. Sharma, A.K. Joshi, R. Trethowan, High yielding spring bread wheat germplasm for global irrigated and rainfed production systems, Euphytica 157 (2007) 351-363.

[22]

J.N. Martin, B.F. Carver, R.M. Hunger, T.S. Cox, Contributions of leaf rust resistance and awns to agronomic and grain quality performance in winter wheat, Crop Sci. 43 (2003) 1712-1717.

[23]

X. Sun, G. Bai, B.F. Carver, R. Bowden, Molecular mapping of wheat leaf rust resistance gene Lr42, Crop Sci. 50 (2010) 59-66.

[24]

Z. Liu, R.L. Bowden, G. Bai, Molecular markers for leaf rust resistance gene Lr42 in wheat, Crop Sci. 53 (2013) 1566-1570.

[25]

H.S. Gill, C. Li, J.S. Sidhu, W. Liu, D. Wilson, G. Bai, B.S. Gill, S.K. Sehgal, Fine mapping of the wheat leaf rust resistance gene Lr42, Int. J. Mol. Sci. 20 (2019) 2445.

[26]

M. Tuinstra, G. Ejeta, P. Goldsbrough, Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci, Theor. Appl. Genet. 95 (1997) 1005-1011.

[27]

A.P. Roelfs, J.W. Martens, An international system of nomenclature for Puccinia graminis f. sp. tritici, Phytopathology 78 (1988) 526-533.

[28]

A.N. Bernardo, H. Ma, D. Zhang, G. Bai, Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance, Mol. Breed. 29 (2012) 477-488.

[29]
International wheat genomic sequencing consortium, shifting the limits in wheat research and breeding using a fully annotated reference genome, Science 361 (2018) eaar7191.
[30]

M.C. Luo, Y.Q. Gu, D. Puiu, H. Wang, S.O. Twardziok, K.R. Deal, N. Huo, T. Zhu, L. Wang, Y. Wang, P.E. McGuire, Genome sequence of the progenitor of the wheat D genome Aegilops tauschii, Nature 551 (2017) 498–502.

[31]

C. Feuillet, S. Travella, N. Stein, L. Albar, A. Nublat, B. Keller, Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome, Proc. Nat. Acad. Sci. U. S. A. 100 (2003) 15253-15258.

[32]

L. Huang, S.A. Brooks, W. Li, J.P. Fellers, H.N. Trick, B.S. Gill, Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat, Genetics 164 (2003) 655-664.

[33]

S. Cloutier, B.D. McCallum, C. Loutre, T.W. Banks, T. Wicker, C. Feuillet, B. Keller, M.C. Jordan, Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large Psr567 gene family, Plant Mol. Biol. 65 (2007) 93-106.

[34]

A.K. Thind, T. Wicker, H. Šimková, D. Fossati, O. Moullet, C. Brabant, J. Vrána, J. Doležel, S.G. Krattinger, Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly, Nat. Biotechnol. 35 (2017) 793-796.

[35]

S. Periyannan, J. Moore, M. Ayliffe, U. Bansal, X. Wang, L.i. Huang, K. Deal, M. Luo, X. Kong, H. Bariana, The gene Sr33, an ortholog of barley mla genes, encodes resistance to wheat stem rust race Ug99, Science 341 (2013) 786-788.

[36]

C. Saintenac, W. Zhang, A. Salcedo, M.N. Rouse, H.N. Trick, E. Akhunov, J. Dubcovsky, Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group, Science 341 (2013) 783-786.

[37]

B. Steuernagel, S.K. Periyannan, I. Hernández-Pinzón, K. Witek, M.N. Rouse, G. Yu, A. Hatta, M. Ayliffe, H. Bariana, J.D.G. Jones, Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture, Nat. Biotechnol. 34 (2016) 652-655.

[38]

Z. Su, S. Jin, D. Zhang, G. Bai, Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat, Theor. Appl. Genet. 131 (2018) 2371-2380.

The Crop Journal
Pages 1357-1366
Cite this article:
Liu Y, Chen H, Li C, et al. Development of diagnostic markers for a wheat leaf rust resistance gene Lr42 using RNA-sequencing. The Crop Journal, 2021, 9(6): 1357-1366. https://doi.org/10.1016/j.cj.2021.02.012

253

Views

2

Downloads

5

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 20 October 2020
Revised: 11 December 2020
Accepted: 17 March 2021
Published: 06 April 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return