AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Target chromosome-segment substitution: A way to breeding by design in rice

Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, China
Show Author Information

Abstract

Progress in plant breeding depends on the development of genetic resources, genetic knowledge, and breeding techniques. The core of plant breeding is the use of naturally occurring variation. At the beginning of the post-genomic era, a new concept of “breeding by design” was proposed, which aims to control all allelic variation for all genes of agronomic importance. In the past two decades, we have applied a three-step strategy for research on rice breeding by design. In the first step, we constructed a single-segment substitution line (SSSL) library using Huajingxian 74 (HJX74), an elite xian (indica) rice cultivar, as the recipient in which to assemble genes from the rice AA genome. In the second step, we identified a series of desirable genes in the SSSL library. In the third step, we designed new rice lines, and achieved the breeding goals by pyramiding target genes in the HJX74-SSSL library. This review introduces the background, concept, and strategy of breeding by design, as well as our achievements in rice breeding by design using the HJX74-SSSL platform. Our practice shows that target chromosome-segment substitution is a way to breeding by design.

References

[1]

J.D. Peleman, J.R. van der Voort, Breeding by design, Trends Plant Sci. 8 (2003) 330–334.

[2]

H. Morishima, H.I. Oka, The pattern of interspecific variation in the genus Oryza: its quantitative representation by statistical methods, Evolution 14 (1960) 153–165.

[3]

J.R. Harland, M.J. De Wet, Towards rational classification of cultivated plants, Taxon 20 (1971) 509–517.

[4]

T.T. Chang, The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices, Euphytica 25 (1976) 425–441.

[5]

G.S. Khush, Origin, dispersal, cultivation and variation of rice, Plant Mol. Biol. 35 (1997) 25–34.

[6]

Y. Ting, Origination of the rice cultivation in China, J. College Agric. Sun Yat-Sen Univ. 7 (1949) 11–24.

[7]

W. Wang, R. Mauleon, Z. Hu, D. Chebotarov, S. Tai, Z. Wu, M. Li, T. Zheng, R.R. Fuentes, F. Zhang, L. Mansueto, D. Copetti, M. Sanciangco, K.C. Palis, J. Xu, C. Sun, B. Fu, H. Zhang, Y. Gao, X. Zhao, F. Shen, X. Cui, H. Yu, Z. Li, M. Chen, J. Detras, Y. Zhou, X. Zhang, Y. Zhao, D. Kudrna, C. Wang, R. Li, B. Jia, J. Lu, X. He, Z. Dong, J. Xu, Y. Li, M. Wang, J. Shi, J. Li, D. Zhang, S. Lee, W. Hu, A. Poliakov, I. Dubchak, V.J. Ulat, F.N. Borja, J.R. Mendoza, J. Ali, J. Li, Q. Gao, Y. Niu, Z. Yue, M.E.B. Naredo, J. Talag, X. Wang, J. Li, X. Fang, Y. Yin, J.C. Glaszmann, J. Zhang, J. Li, R.S. Hamilton, R.A. Wing, J. Ruan, G. Zhang, C. Wei, N. Alexandrov, K.L. McNally, Z. Li, H. Leung, Genomic variation in 3010 diverse accessions of Asian cultivated rice, Nature 557 (2018) 43–49.

[8]

S. Kato, H. Kosaka, S. Hara, On the affinity of rice varieties as shown by fertility of hybrid plants, Sci. Bull. Faculty Agric. Kyushu Univ. 3 (1928) 132–147.

[9]

Y. Ting, The origin and evolution of cultivated rice in China, Acta Bot. Sin. 8 (1957) 243–260.

[10]
C. Allender, The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome, 2010.
[11]

J.C. Glaszmann, Isozymes and classification of Asian rice varieties, Theor. Appl. Genet. 74 (1987) 21–30.

[12]

A.J. Garris, T.H. Tai, J. Coburn, S. Kresovich, S. McCouch, Genetic structure and diversity in Oryza sativa L., Genetics 169 (2005) 1631–1638.

[13]

H.A. Agrama, W. Yan, M. Jia, R. Fjellstrom, A.M. McClung, Genetic structure associated with diversity and geographic distribution in the USDA rice world collection, Nat. Sci. 2 (2010) 247–291.

[14]

G. Zhang, Evolution and development of five generations of rice, J. South China Agricul. Univ. 40 (2019) 211–216.

[15]

G. Zhang, Prospects of utilization of inter-subspecific heterosis between indica and japonica rice, J. Integr. Agr. 19 (2020) 1–10.

[16]

C. Alonso-Blanco, M. Koornneef, Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics, Trends Plant Sci. 5 (2000) 22–29.

[17]

M. Yano, Genetic and molecular dissection of naturally occurring variations, Curr. Opin. Plant Biol. 4 (2001) 130–135.

[18]

M.A.J. Parry, P.J. Madgwick, C. Bayon, K. Tearall, A. Hernandez-Lopez, M. Baudo, M. Rakszegi, W. Hamada, A. Al-Yassin, H. Ouabbou, M. Labhilili, A.L. Phillips, Mutation discovery for crop improvement, J. Exp. Bot. 60 (2009) 2817–2825.

[19]

C. Lister, C. Dean, Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana, Plant J. 4 (1993) 745–750.

[20]

C. Alonso-Blanco, A.J.M. Peeters, M. Koornneef, C. Lister, C. Dean, N. van den Bosch, J. Pot, M.T.R. Kuiper, Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population, Plant J. 14 (1998) 259–271.

[21]

Y. Takeuchi, H. Hayasaka, B. Chiba, I. Tanaka, T. Shimano, M. Yamagishi, K. Nagano, S. Sasaki, M. Yano, Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage using doubled-haploid lines of temperate japonica rice cultivars, Breed. Sci. 51 (2001) 191–197.

[22]
R.C. Jansen, Quantitative trait loci in inbred lines, in: D.J. Balding, M. Bishop, C. Cannings (Eds.), Handbook of Statistical Genetics, John Wiley & Sons, Chichester, UK, 2003, pp. 445–476.
[23]

Y. Eshed, M. Bu-Abied, Y. Saranga, D. Zamir, Lycopersicon esculentum lines containing small overlapping introgressions from Lycopersicon pennellii, Theor. Appl. Genet. 83 (1992) 1027–1034.

[24]

K.K. Jena, G.S. Khush, G. Kochert, RFLP analysis of rice (Oryza sativa L.) introgression lines, Theor. Appl. Genet. 84 (1992) 608–616.

[25]

Y. Eshed, D. Zamir, An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL, Genetics 141 (1995) 1147–1162.

[26]

Y. Aida, H. Tsunematsu, K. Doi, A. Yoshimura, Development of a series of introgression lines of japonica in the background of indica rice, Rice Genet. Newsl. 14 (1997) 41–43.

[27]

T. Kubo, Y. Aida, K. Nakamura, H. Tsunematsu, K. Doi, A. Yoshimura, Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.), Breed. Sci. 52 (2002) 319–325.

[28]

T. Ebitani, Y. Takeuchi, Y. Nonoue, T. Yamamoto, K. Takeuchi, M. Yano, Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’, Breed. Sci. 55 (2005) 65–73.

[29]

J.M. Ribaut, D. Hoisington, Marker-assisted selection: new tools and strategies, Trends Plant Sci. 3 (1998) 236–239.

[30]

G. Zhang, R. Zeng, Z. Zhang, X. Ding, W. Li, G. Liu, F. He, A. Tulukdar, C. Huang, Z. Xi, L. Qin, J. Shi, F. Zhao, M. Feng, Z. Shan, L. Chen, X. Guo, H. Zhu, Y. Lu, The construction of a library of single segment substitution lines in rice (Oryza sativa L.), Rice Genet. Newsl. 21 (2004) 85–87.

[31]

Z. Xi, F. He, R. Zeng, Z. Zhang, X. Ding, W. Li, G. Zhang, Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.), Genome 49 (2006) 476–484.

[32]

A.J. Monforte, S.D. Tanksley, Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery, Genome 43 (2000) 803–813.

[33]

J.J.B. Keurentjes, L. Bentsink, C. Alonso-Blanco, C.J. Hanhart, H.B.D. Vries, S. Effgen, D. Vreugdenhil, M. Koornneef, Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population, Genetics 175 (2007) 891–905.

[34]

M. Yano, T. Sasaki, Genetic and molecular dissection of quantitative traits in rice, Plant Mol. Biol. 35 (1997) 145–153.

[35]

D. Zamir, Improving plant breeding with exotic genetic libraries, Nat. Rev. Genet. 2 (2001) 983–989.

[36]

F. Breseghello, Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.), J. Agric. Food Chem. 61 (2013) 8277–8286.

[37]

A.C. Zeven, Landraces: a review of definitions and classifications, Euphytica 104 (1998) 127–139.

[38]

Y. Oladosu, M.Y. Rafii, N. Abdullah, G. Hussin, A. Ramli, H.A. Rahim, G. Miah, M. Usman, Principle and application of plant mutagenesis in crop improvement: a review, Biotechnol. Biotechnol. Equip. 30 (2016) 1–16.

[39]
B. Amanda, History and overview of the green revolution. https://www.thoughtco.com/green-revolution-overview-1434948.
[40]

S.D. Tanksley, N.D. Young, A.H. Paterson, M.W. Bonierbale, RFLP mapping in plant breeding: new tools for an old science, Nat. Biotechnol. 7 (1989) 257–264.

[41]

N.D. Young, A cautiously optimistic vision for marker assisted breeding, Mol. Breed. 5 (1999) 505–510.

[42]

N. Huang, E.R. Angeles, J. Domingo, G. Magpantay, S. Singh, G. Zhang, N. Kumaravadivel, J. Bennett, G.S. Khush, Pyramiding of bacterial blight resistance genes in rice: marker-aided selection using RFLP and PCR, Theor. Appl. Genet. 95 (1997) 313–320.

[43]

M.L. Ali, P.L. Sanchez, S. Yu, M. Lorieux, G.C. Eizenga, Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa), Rice 3 (2010) 218–234.

[44]

D. Balakrishnan, M. Surapaneni, S. Mesapogu, S. Neelamraju, Development and use of chromosome segment substitution lines as a genetic resource for crop improvement, Theor. Appl. Genet. 132 (2019) 1–25.

[45]

F. He, Z. Xi, R. Zeng, A. Talukdar, G. Zhang, Development of single segment substitution lines (SSSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS, Acta Genet. Sin. 32 (2005) 825–831.

[46]

R. Zeng, Z. Zhang, F. He, Z. Xi, A. Talukdar, J. Shi, L. Qin, C. Huang, G. Zhang, Identification of multiple alleles at the Wx locus and development of single segment substitution lines for the alleles in rice, Rice Sci. 13 (2006) 9–14.

[47]

Q. Chen, J. Mu, H. Zhou, S. Yu, Genetic effect of japonica alleles detected in indica candidate introgression lines, Sci. Agric. Sin. 40 (2007) 2379–2387.

[48]

W. Zhu, J. Lin, D. Yang, L. Zhao, Y. Zhang, Z. Zhu, T. Chen, C. Wang, Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, indica recipient 93–11 and japonica donor Nipponbare, Plant Mol. Biol. Rep. 27 (2009) 126–131.

[49]

J. Xu, Q. Zhao, P. Du, C. Xu, B. Wang, Q. Feng, Q. Liu, S. Tang, M. Gu, B. Han, G. Liang, Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.), BMC Genomics 11 (2010) 656.

[50]

J. Bian, L. Jiang, L.L. Liu, X.J. Wei, Y.H. Xiao, L.J. Zhang, Z.G. Zhao, H.Q. Zhai, J.M. Wan, Construction of a new set of rice chromosome segment substitution lines and identification of grain weight and related traits QTLs, Breed. Sci. 60 (2010) 305–313.

[51]

K. Ujiie, T. Kashiwagi, K. Ishimaru, Identification and functional analysis of alleles for productivity in two sets of chromosome segment substitution lines of rice, Euphytica 187 (2012) 325–337.

[52]

T. Ookawa, R. Aoba, T. Yamamoto, T. Ueda, T. Takai, S. Fukuoka, T. Ando, S. Adachi, M. Matsuoka, T. Ebitani, Y. Kato, I.W. Mulsanti, M. Kishii, M. Reynolds, F. Piñera, T. Kotake, S. Kawasaki, T. Motobayashi, T. Hirasawa, Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice, Sci. Rep. 28 (2016) 30572.

[53]

B. Zhang, L. Shang, B. Ruan, A. Zhang, S. Yang, H. Jiang, C. Liu, K. Hong, H. Lin, Z. Gao, J. Hu, D. Zeng, L. Guo, Q. Qian, Development of three sets of high-throughput genotyped rice chromosome segment substitution lines and QTL mapping for eleven traits, Rice 12 (2019) 33.

[54]

T. Takai, Y. Nonoue, S. Yamamoto, U. Yamanouchi, K. Matsubara, Z.W. Liang, H. Lin, N. Ono, Y. Uga, M. Yano, Development of chromosome segment substitution lines derived from backcross between indica donor rice cultivar ‘Nona Bokra’ and japonica recipient cultivar Koshihikari, Breed. Sci. 57 (2007) 257–261.

[55]

T. Ando, T. Yamamoto, T. Shimizu, X. Ma, A. Shomura, Y. Takeuchi, S. Lin, M. Yano, Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice, Theor. Appl. Genet. 116 (2008) 881–890.

[56]

W. Hao, M.Z. Zhu, J.P. Gao, S.Y. Sun, H.X. Lin, Identification of quantitative trait loci for rice quality in a population of chromosome segment substitution lines, J. Integr. Plant. Biol. 51 (2009) 500–512.

[57]

K. Hori, K. Sugimoto, Y. Nonoue, N. Ono, K. Matsuba, U. Yamanouchi, A. Abe, Y. Takeuchi, M. Yano, Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars, Theor. Appl. Genet. 120 (2010) 1547–1557.

[58]

H. Yasui, Y. Yamagata, A. Yoshimura, Development of chromosomal segment substitution lines derived from indica rice donor cultivars DV85 and ARC10313 in the genetic background of japonica cultivar Taichung 65, Breed. Sci. 60 (2010) 620–628.

[59]

H. Zhang, Q. Zhao, Z.Z. Sun, C.Q. Zhang, Q. Feng, S.Z. Tang, G.H. Liang, M.H. Gu, B. Han, Q.Q. Liu, Development and high-throughput genotyping of substitution lines carrying the chromosome segments of indica 9311 in the background of japonica Nipponbare, J. Genet. Genomics 38 (2011) 603–611.

[60]

V. Kanjoo, K. Punyawaew, J.L. Siangliw, S. Jearakongman, A. Vanavichit, T. Toojinda, Evaluation of agronomic traits in chromosome segment substitution lines of KDML105 containing drought tolerance QTL under drought stress, Rice Sci. 19 (2012) 117–124.

[61]

S.R.M. Pinson, G. Liu, M.H. Jia, Y. Jia, R.G. Fjellstrom, A. Sharma, Y. Wang, R.E. Tabien, Z.K. Li, Registration of a rice gene mapping population consisting of ‘TeQing’-into-‘Lemont’ (TIL) backcross introgression lines, J. Plant Reg. 6 (2012) 128–135.

[62]

T. Takai, T. Ikka, K. Kondo, Y. Nonoue, N. Ono, Y. Arai-Sanoh, S. Yoshinaga, H. Nakano, M. Yano, M. Kondo, T. Yamamoto, Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines, BMC Plant Biol. 14 (2014) 295.

[63]

K. Nagata, T. Ando, Y. Nonoue, T. Mizubayashi, N. Kitazawa, A. Shomure, K. Matsubara, N. Ono, R. Mizobuchi, T. Shibaya, E. Ogiso-Tanaka, K. Hori, M. Yano, S. Fukuoka, Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica × indica cross, Breed. Sci. 65 (2015) 308–318.

[64]

Y. Uga, Y. Kitomi, E. Yamamoto, N. Kanno, S. Kawai, T. Mizubayashi, S. Fukuoka, A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of deeper rooting, Rice 8 (2015) 8.

[65]

K. Doi, N. Iwata, A. Yosimura, The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud) in the background of japonica rice (O. sativa L.), Rice Genet. Newsl. 14 (1997) 39–41.

[66]

A. Ghesquire, J. Squier, G. Second, M. Lorieux, First steps towards a rational use of African rice, Oryza glaberrima, in rice breeding through a ‘contig line’ concept, Euphytica 96 (1997) 31–39.

[67]

J. Li, J. Xiao, S. Grandillo, L. Jiang, Y. Wang, Q. Deng, L. Yuan, S.R. McCouch, QTL detection for rice grain quality traits using an interspecific backcross population de-rived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice, Genome 47 (2004) 697–704.

[68]

J.W. Kang, J.P. Suh, D.M. Kim, C.S. Oh, J.M. Oh, S.N. Ahn, QTL Mapping of agronomic traits in an advanced backcross population from a cross between Oryza sativa L. cv. Milyang 23 and O. glaberrima, Korean, J. Breed. Sci. 40 (2008) 243–249.

[69]

A.G. Gutierrez, S.J. Carabali, O.X. Giraldo, C.P. Martinez, F. Correa, G. Prado, J. Tohme, M. Lorieux, Identification of a rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa × O. glaberrima introgression lines, BMC Plant Biol. 10 (2010) 6.

[70]

M.N. Ndjiondjop, B. Manneh, M. Cissoko, N.K. Drame, G.K. Kakai, R. Bocco, H. Baimey, M. Wopereis, Drought resistance in an interspecific backcross population of rice (Oryza spp.) derived from the cross WAB56-104 (O. sativa) × CG14 (O. glaberrima), Plant Sci. 179 (2010) 364–373.

[71]

T. Ram, R. Deen, S.K. Gautam, K. Ramesh, Y.K. Rao, D.S. Brar, Identification of new genes for brown planthopper resistance in rice introgressed from O. glaberrima and O. minuta, Rice Genet. Newsl. 25 (2010) 67.

[72]
R.A. Shim, E.R. Angeles, M. Ashikari, T. Takashi, Development and evaluation of Oryza glaberrima Steud. chromosome segment substitution lines (CSSLs) in the background of O. sativa L. cv. Koshihikari, Breed. Sci. 60 (2010) 616–619.
[73]

D. Fujita, K. Doi, A. Yoshimura, H. Yasui, Introgression of a resistance gene for green leafhopper from Oryza nivara into cultivated rice, Oryza sativa L., Rice Genet. Newsl. 21 (2004) 64.

[74]

D. Balakrishnan, M. Surapaneni, V.R. Yadavalli, K.R. Addanki, S. Mesapogu, K. Beerelli, S. Neelamraju, Detecting CSSLs and yield QTLs with additive, epistatic and QTL × environment interaction effects from Oryza sativa × O. nivara IRGC81832 cross, Sci. Rep. 10 (2020) 7766.

[75]

D. Fujita, K. Doi, A. Yoshimura, H. Yasui, Mapping new resistance gene for green rice leafhopper introgressed from Oryza rufipogon Griff. into cultivated rice, Oryza sativa L., Rice Genet. Newsl. 20 (2003) 79.

[76]
E.M. Septiningsih, J. Prasetiyono, E. Lubis, T.H. Tai, T. Tjubaryat, S. Moeljopawiro, S.M. McCouch, Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon, Theor. Appl. Genet. 107 (2003) 1419–1432.
[77]

W. Hao, J. Jin, S.Y. Sun, M.Z. Zhu, H.X. Lin, Construction of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome and identification of quantitative trait loci for rice quality, J. Plant Physiol. Mol. Biol. 32 (2006) 354–362.

[78]

F. Tian, D. Li, Q. Fu, Z. Zhu, Y. Fu, X. Wang, C. Sun, Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits, Theor. Appl. Genet. 112 (2006) 570–580.

[79]

L.B. Tan, F.X. Liu, W. Xue, G.J. Wang, S. Ye, Z.F. Zhu, Y. Fu, X. Wang, C. Sun, Development of Oryza rufipogon and O. sativa introgression lines and assessment for yield-related quantitative trait loci, J. Integr. Plant Biol. 49 (2007) 871–884.

[80]

K.K. Cheema, N.S. Bains, G.S. Mangat, A. Das, Y. Vikal, D.S. Brar, G.S. Khush, K. Singh, Development of high yielding IR64 × Oryza rufipogon (Griff) introgression lines and identification of introgressed alien chromosome segments using markers, Euphytica 160 (2008) 401–409.

[81]

H. Hirabayashi, H. Sato, Y. Nonoue, Y. Kuno-Takemoto, Y. Takeuchi, H. Kato, H. Nemoto, T. Ogawa, M. Yano, T. Imbe, I. Ando, Development of introgression lines derived from Oryza rufipogon and O. glumaepatula in the genetic background of japonica cultivated rice (O. sativa L.) and evaluation of resistance to rice blast, Breed Sci. 60 (2010) 604–612.

[82]

T. Furuta, K. Uehara, R.B. Angeles-Shim, J. Shim, M. Ashikari, T. Takashi, Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L., Breed Sci. 63 (2014) 468–475.

[83]

W. Qiao, L. Qi, Z. Cheng, L. Su, J. Li, S.Y. Sun, J. Ren, X. Zheng, Q. Yang, Development and characterization of chromosome segment substitution lines derived from Oryza rufipogon in the genetic background of O. sativa spp. indica cultivar 9311, BMC Genomics 17 (2016) 580.

[84]

D. Yang, X. Ye, X. Zheng, C. Cheng, N. Ye, F. Huang, Development and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome, Front. Plant Sci. 7 (2016) 1737.

[85]

X. Ma, B. Han, J. Tang, J. Zhang, D. Cui, L. Geng, H. Zhou, M. Li, L. Han, Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of the japonica rice cultivar Nipponbare (Oryza sativa L.), Plant Physiol. Biol. 144 (2019) 274–282.

[86]

K. Bessho-Uehara, T. Furuta, K. Masuda, S. Yamada, R.B. Angeles-Shim, M. Ashikari, T. Takashi, Construction of rice chromosome segment substitution lines harboring Oryza barthii genome and evaluation of yield-related traits, Breed. Sci. 67 (2017) 408–415.

[87]

H. Zhao, L. Sun, T. Xiong, Z. Wang, Y. Liao, T. Zou, M. Zheng, Z. Zhang, X. Pan, N. He, G. Zhang, H. Zhu, Z. Liu, P. He, X. Fu, Genetic characterization of the chromosome single-segment substitution lines of O. glumaepatula and O. barthii and identification of QTLs for yield-related traits, Mol. Breed. 39 (2019) 51.

[88]

T. Kurakazu, K. Ikeda, P.L. Sanchez, K. Doi, E.R. Angeles, G.S. Khush, A. Yoshimura, Oryza meridionalis chromosomal segment introgression lines in cultivated rice, O. sativa L, Rice Genet. Newsl. 18 (2001) 81–82.

[89]

N. He, R. Wu, X. Pan, L. Peng, K. Sun, T. Zou, H. Zhu, R. Zeng, Z. Liu, G. Liu, S. Wang, G. Zhang, X. Fu, Development and trait evaluation of chromosome single-segment substitution lines of O. meridionalis in the background of O. sativa, Euphytica 213 (2017) 281.

[90]

P.L. Sanchez, K. Sobrizal, H. Ikeda, A.Y. Yasui, RFLP mapping of genes controlling heading date found in Oryza glumaepatula Steud. introgression lines in rice, Rice Genet. Newsl. 18 (2001) 57.

[91]

P.N. Rangel, R.P.V. Brondani, P.H.N. Rangel, C. Brondani, Agronomic and molecular characterization of introgression lines from the interspecific cross O. sativa BG90-2 × Oryza glumaepatula RS-16, Genet. Mol. Res. 7 (2008) 184–195.

[92]

P.K. Subudhi, T. De Leon, P.K. Singh, A. Parco, M.A. Cohn, T. Sasaki, A chromosome segment substitution library of weedy rice for genetic dissection of complex agronomic and domestication traits, PLoS ONE 10 (2015) e0130650.

[93]

J. Kuspira, J. Unrau, Genetic analyses of certain characters in common wheat using whole chromosome substitution lines, Can. J. Plant Sci. 37 (1957) 300–326.

[94]

E. Millet, J.K. Rong, C. Qualset, P. McGuire, M. Bernard, P. Sourdille, M. Feldman, Production of chromosome-arm substitution lines of wild emmer in common wheat, Euphytica 190 (2012) 1–17.

[95]

L. Gu, B. Wei, R. Fan, X. Jia, X. Wang, X. Zhang, Development, identification and utilization of introgression lines using Chinese endemic and synthetic wheat as donors, J. Integr. Plant. Biol. 8 (2015) 688–697.

[96]

S. Liu, R. Zhou, Y. Dong, P. Li, J. Jia, Development, utilization of introgression lines using a synthetic wheat as donor, Theor. Appl. Genet. 112 (2006) 1360–1373.

[97]

E. Pestsova, A. Borner, M.S. Roder, Development of a set of Triticum aestivum-Aegilops tauschii introgression lines, Hereditas 135 (2001) 139–143.

[98]

E. Pestsova, A. Borner, M.S. Roder, Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines, Theor. Appl. Genet. 112 (2006) 634–647.

[99]

D. Stelly, S. Saha, D. Raska, J. Jenkins, J. McCarty, O. Gutierrez, Registration of 17 Upland (Gossypium hirsutum) germplasm lines disomic for different G. barbadense chromosome or arm substitutions, Crop Sci. 45 (2005) 2663–2665.

[100]
S. Saha, D.M. Stelly, D.A. Raska, J. Wu, J.N. Jenkins, J.C. McCarty, A. Makamov, V. Gotmare, I.Y. Abdurakhmonov, B.T. Campbell, Chromosome substitution lines: concept, development and utilization in the genetic improvement of upland cotton, in: I.Y. Abdurakhmonov (Ed.), Plant Breeding, InTech Press, Rijeka, Yugoslavia, 2012, pp. 107–128.
[101]

Z. Yang, J. Li, A. Li, B. Zhang, G. Liu, J. Li, Y. Shi, A. Liu, J. Jiang, T. Wang, Y. Yuan, Developing chromosome segment substitution lines (CSSLs) in cotton (Gossypium) using advanced backcross and MAS, Mol. Plant Breed. 2 (2009) 233–241.

[102]

M. Lan, Z. Yang, Y. Shi, R. Ge, A. Li, B. Zhang, J. Li, H. Shang, A. Liu, T. Wang, Y. Yuan, Assessment of substitution lines and identification of QTL related to fiber yield and quality traits in BC4F2 and BC4F3 populations from Gossypium hirsutum × Gossypium barbadense, Sci. Agric. Sin. 44 (2011) 3086-3097 (in Chinese with English abstract).

[103]

P. Wang, Y. Zhu, X. Song, Z. Cao, Y. Ding, B. Liu, X. Zhu, S. Wang, W. Guo, T. Zhang, Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs, Theor. Appl. Genet. 124 (2012) 1415–1428.

[104]

J. Zhang, Y. Dan, Y. Liang, Y. Gu, B. Zhang, B. Zhang, J. Li, J. Gong, A. Liu, H. Shang, T. Wang, M. Gong, Y. Yuan, Evaluation of yield and fiber quality traits of chromosome segments substitution lines population (BC5F3 and BC5F3:4) in cotton, J. Plant Genet. Resour. 13 (2012) 773–781.

[105]

Y. Fu, D.D. Yuan, W.J. Hu, C.P. Cai, W.Z. Guo, Development of Gossypium barbadense chromosome 18 segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum and mapping of QTLs related to agronomic traits, Acta Agron. Sin. 39 (2013) 21-28 (in Chinese with English abstract).

[106]

B. Li, Y. Shi, J. Gong, J. Li, A. Liu, H. Shang, W. Gong, T. Chen, Q. Ge, C. Jia, Y. Lei, Y. Hu, Y. Yuan, Genetic effects and heterosis of yield and yield component traits based on Gossypium barbadense chromosome segment substitution lines in two Gossypium hirsutum backgrounds, PLoS ONE 11 (2016) e0157978.

[107]

H. Zhai, W. Gong, Y. Tan, A. Liu, W. Song, J. Li, Z. Deng, L. Kong, J. Gong, H. Shang, T. Chen, Q. Ge, Y. Shi, Y. Yuan, Identification of chromosome segment substitution lines of Gossypium barbadense introgressed in G. hirsutum and quantitative trait locus mapping for fiber quality and yield traits, PLoS ONE 11 (2016) e0159101.

[108]

P. Li, M. Wang, Q. Lu, Q. Ge, M. Rashid, A. Liu, J. Gong, Comparative transcriptome analysis of cotton fiber development of upland cotton (Gossypium hirsutum) and chromosome segment substitution lines from G. hirsutum × G. barbadense, BMC Genomics 18 (2017) 705.

[109]

Y. Shi, A. Liu, J. Li, J. Zhang, S. Li, J. Zhang, L. Ma, R. He, W. Song, L. Guo, Q. Lu, X. Xiang, W. Gong, J. Gong, Q. Ge, H. Shang, X. Deng, J. Pan, Y. Yuan, Examining two sets of introgression lines across multiple environments reveals background independent and stably expressed quantitative trait loci of fiber quality in cotton, Theor. Appl. Genet. 133 (2020) 2075–2093.

[110]

D. Zhu, X. Li, Z. Wang, C. You, X. Nie, J. Sun, X. Zhang, D. Zhang, Z. Lin, Genetic dissection of an allotetraploid interspecific CSSLs guides interspecific genetics and breeding in cotton, BMC Genomics 21 (2020) 431.

[111]

S. Zhang, X. Zhu, L. Feng, X. Gao, B. Yang, T. Zhang, B. Zhou, Mapping of fiber quality QTLs reveals useful variation and footprints of cotton domestication using introgression lines, Sci. Rep. 6 (2016) 31954.

[112]

A.A. Keerio, C. Shen, Y. Nie, M.M. Ahmed, X. Zhang, Z. Lin, QTL Mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum × G. tomentosum, Int. J. Mol. Sci. 19 (2018) 243.

[113]

M. Ulloa, C. Wang, S. Saha, R.B. Hutmacher, D.M. Stelly, J.N. Jenkins, J. Burke, P.A. Roberts, Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species, Genetica 144 (2016) 167–179.

[114]
C.R. Burnham, Cytogenetics in plant improvement, in: J.F. Kenneth (Ed.), Plant Breeding, The Iowa State University Press, Ames, USA, 1966, pp. 139–188.
[115]

S.J. Szalma, B.M. Hostert, J.R. Ledeaux, C.W. Stuber, J.B. Holland, QTL mapping with near-isogenic lines in maize, Theor. Appl. Genet. 114 (2007) 1211–1228.

[116]

L.Q. Wang, Y.F. Zhao, Y.D. Xue, Z.X. Zhang, Y.L. Zheng, J.T. Cheng, Development and evaluation of two link-up single segment introgression lines (SSILs) in Zea mays, Acta Agron. Sin. 33 (2007) 663-668 (in Chinese with English abstract).

[117]

M.Y. Lu, X.H. Li, A.L. Shang, Y.M. Wang, Z.Y. Xi, Characterization of a set of chromosome single-segment substitution lines derived from two sequenced elite maize inbred lines, Maydica 56 (2011) 399–407.

[118]

S. Salvi, S. Corneti, M. Bellotti, N. Carraro, M.C. Sanguineti, S. Castelletti, R. Tuberosa, Genetic dissection of maize phenology using an intraspecific introgression library, BMC Plant Biol. 11 (2011) 4.

[119]

F. Li, H.T. Jia, L. Liu, C.X. Zhang, Z.J. Liu, Z.X. Zhang, Quantitative trait loci mapping for kernel row number using chromosome segment substitution lines in maize, Genet. Mol. Res. 13 (2014) 1707–1716.

[120]

H. Wang, X. Zhang, H. Yang, Y. Chen, L. Yuan, W. Li, Z. Liu, J. Tang, D. Kang, Heterotic loci identified for plant height and ear height using two CSSLs test populations in maize, J. Integr. Agric. 15 (2016) 2726–2735.

[121]

L.O. Lopez-Zuniga, P. Wolters, S. Davis, T. Weldekidan, J.M. Kolkman, R. Nelson, K.S. Hooda, E. Rucker, W. Thomason, R. Wisser, P. Balint-Kurti, Using maize chromosome segment substitution line populations for the identification of loci associated with multiple disease resistance, G3-Genes Genomes Genet. 9 (2019) 189–201.

[122]

L. Wang, A. Yang, C. He, M. Qu, J. Zhang, Creation of new maize germplasm using alien introgression from Zea mays ssp. Mexicana, Euphytica 164 (2008) 789–801.

[123]

Y. Mano, F. Omori, Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays), Ann. Bot. 112 (2013) 1125–1139.

[124]
D. Bernacchi, T. Beck-Bunn, D. Emmatty, Y. Eshed, S. Inai, J. Lopez, V. Petiard, H. Sayama, J. Uhlig, D. Zamir, S. Tanksley, Advanced backcross QTL analysis of tomato Ⅱ. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium, Theor. Appl. Genet. 97 (1998) 170–180.
[125]

R.T. Chetelat, V. Meglic, Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum), Theor. Appl. Genet. 100 (2000) 232–241.

[126]

M.A. Canady, M. Vladimir, T.C. Roger, A library of Solanum lycopersicoides introgression lines in cultivated tomato, Genome 48 (2005) 685–697.

[127]

I. Matus, A. Corey, T. Filichkin, P.M. Hayes, M.I. Vales, J. Kling, O. Riera-Lizarazu, K. Sato, W. Powell, R. Waugh, Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background, Genome 46 (2003) 1010–1023.

[128]

K. Pillen, A. Zacharias, J. Leon, Advanced backcross QTL analysis in barley (Hordeum vulgare L.), Theor. Appl. Genet. 107 (2003) 340–352.

[129]

M. von Korff, H. Wang, J. Leon, K. Pillen, Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor, Theor. Appl. Genet. 109 (2004) 1736–1745.

[130]

K. Hori, K. Sato, N. Nankaku, K. Takeda, QTL analysis in recombinant chromosome substitution lines and doubled haploid lines derived from a cross between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. Spontaneum, Mol. Breed. 16 (2005) 295–311.

[131]

M. von Korff, H. Wang, J. Leon, K. Pillen, AB-QTL analysis in spring barley: I Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley, Theor. Appl. Genet. 111 (2005) 583–590.

[132]

M. von Korff, H. Wang, J. Leon, K. Pillen, AB-QTL analysis in spring barley: II detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum), Theor. Appl. Genet. 112 (2006) 1221–1231.

[133]

I. Schmalenbach, N. Korber, K. Pillen, Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust, Theor. Appl. Genet. 117 (2008) 1093–1106.

[134]

K. Sato, K. Takeda, An application of high-throughput SNP genotyping for barley genome mapping and characterization of recombinant chromosome substitution lines, Theor. Appl. Genet. 119 (2009) 613–619.

[135]

K. Sato, T.J. Close, P. Bhat, M. Munoz-Amatriaín, G.J. Muehlbauer, Single nucleotide polymorphism mapping and alignment of recombinant chromosome substitution lines in barley, Plant Cell Physiol. 52 (2011) 728–737.

[136]

K.C. Falke, T.Z. Suni, B. Hackauf, V. Korzun, J. Schondelmaier, P. Wilde, P. Wehling, H. Wortmann, J. Mank, V.J. van der Rouppe, H. Maure, T. Miedane, H.H. Geiger, Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics, Theor. Appl. Genet. 117 (2008) 641–652.

[137]

B.R. Kumari, M.A. Kolesnikova-Allen, C.T. Hash, S. Senthilvel, T. Nepolean, K.P.B. Kisho, O. Riera-Lizarazu, J.R. Witcombe, R.K. Srivastava, Development of a set of chromosome segment substitution lines in pearl millet [Pennisetum glaucum (L.) R. Br.], Crop Sci. 54 (2014) 2175–2182.

[138]

W. Wang, Q. He, H. Yang, S. Xiang, T. Zhao, J. Gai, Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent, Euphytica 189 (2013) 293–307.

[139]

D. Xin, Z. Qi, H. Jiang, Z. Hu, R. Zhu, J. Hu, H. Han, G. Hu, C. Liu, Q. Chen, QTL location and epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines, PLoS ONE 11 (2016) e0149380.

[140]

S. Li, P. Cheng, Y. Bai, Y. Shi, J. Yu, R. Li, R. Zhou, Z. Zhang, X. Wu, Q. Chen, Analysis of soybean somatic embryogenesis using chromosome segment substitution lines and transcriptome sequencing, Genes 10 (2019) 943.

[141]

D. Fonceka, H.A. Tossim, R. Rivallan, H. Vignes, E. Lacut, F. de Bellis, I. Faye, O. Ndoye, S.C.M. Leal-Bertioli, J.F.M. Valls, D.J. Bertioli, J.C. Glaszmann, B. Courtois, J.F. Rami, Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology, PLoS ONE 7 (2012) 11.

[142]
L. Svabova, G. Aubert, P. Smykal, Wild pea Pisum fulvum and Pisum elatius chromosome segment substitution lines in cultivated P. sativum genetic background, in: C.V. Patto, International Legume Society ConferenceLegumes for a Sustainable World, Lisbon, Portugal, 2016, pp. 358.
[143]

P.M. Howell, D.F. Marshall, D.J. Lydiate, Towards developing intervarietal substitution lines in Brassica napus using marker assisted selection, Genome 39 (1996) 348–358.

[144]

M.J. Burns, S.R. Barnes, J.G. Bowman, M.H.E. Clarke, C.P. Werner, M.J. Kearsey, QTL analysis of an intervarietal set of substitution lines in Brassica napus: (I) seed oil content and fatty acid composition, Heredity 90 (2003) 39–48.

[145]

W. Ecke, A. Kampouridis, K.Z. Kubon, A.C. Hirsch, Identification and genetic characterization by high-throughput SNP analysis of intervarietal substitution lines of rapeseed (Brassica napus L.) with enhanced embryogenic potential, Theor. Appl. Genet. 128 (2015) 587–603.

[146]

Y. Zhang, Y. Sun, J. Sun, H. Feng, Y. Wang, Identification and validation of major and minor QTLs controlling seed coat color in Brassica rapa L., Breed. Sci. 69 (2019) 47–54.

[147]

L.D. Ramsay, D.E. Jennings, E.J.R. Bohuon, A.E. Arthur, D.J. Lydiate, M.J. Kearsey, D.F. Marshall, The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci, Genome 39 (1996) 558–567.

[148]

X. Li, W. Wang, Z. Wang, K. Li, Y.P. Lim, Z. Piao, Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa, Front. Plant Sci. 6 (2015) 432.

[149]

M. Gupta, A.S. Mason, J. Batley, S. Bhartil, S. Banga, S. Banga, Molecular cytogenetic characterization of C-genome chromosome substitution lines in Brassica juncea (L.) Czern and Coss, Theor. Appl. Genet. 129 (2016) 1153–1166.

[150]

M.J.W. Jeuken, P. Lindhout, The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm, Theor. Appl. Genet. 109 (2004) 394–401.

[151]

I. Eduardo, P. Arus, A.J. Monforte, Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI 161375, Theor. Appl. Genet. 112 (2005) 139–148.

[152]

I. Eduardo, P. Arus, A.J. Monforte, J. Obando, J.P. Fernandez, J.A. Martinez, A.L. Alarcon, J.M. Alvarez, K.E. Vander, Estimating the genetic architecture of fruit quality traits in melon (Cucumis melo L.) using a genomic library of near-isogenic lines, J. Am. Soc. Hortic. Sci. 132 (2007) 80–89.

[153]

X.J. Lin, X.W. Xu, H.M. Qian, X.H. Qi, Q. Xu, X.H. Chen, Analysis of cucumber chromosome segment introgression lines with powdery mildew resistance based on SSR markers, Acta Hort. Sin. 39 (2012) 485–492.

[154]

Q. Xu, X. Xu, Y. Shi, X. Qi, X. Chen, Elucidation of the molecular responses of a cucumber segment substitution line carrying Pm51 and its recurrent parent triggered by powdery mildew by comparative transcriptome profiling, BMC Genom. 18 (2017) 21.

[155]

J. Harper, I. Armstead, A. Thomas, C. James, D. Gasior, M. Bisaga, L. Roberts, I. King, J. King, Alien introgression in the grasses Lolium perenne (perennial ryegrass) and Festuca pratensis (meadow fescue): the development of seven monosomic substitution lines and their molecular and cytological characterization, Ann. Bot. 107 (2011) 1313–1321.

[156]

M. Urrutia, J. Bonet, P. Arús, A. Monfort, A near-isogenic line (NIL) collection in diploid strawberry and its use in the genetic analysis of morphologic, phenotypic and nutritional characters, Theor. Appl. Genet. 128 (2015) 1261–1275.

[157]

R. Koumproglou, T.M. Wilkes, P. Townson, X.Y. Wang, J. Beynon, H.S. Pooni, H.J. Newbury, M.J. Kearsey, STAIRS: a new genetic resource for functional genomic studies of Arabidopsis, Plant J. 31 (2002) 355–364.

[158]

O. Torjek, R.C. Meyer, M. Zehnsdorf, M. Teltow, G. Strompen, H. Witucka-Wall, A. Blacha, T. Altmann, Construction and analysis of 2 reciprocal introgression line populations, J. Hered. 99 (2008) 396–406.

[159]

R.S. Fletcher, L.M. Jack, Y. Seth, W.L. Bauerle, G. Reuning, S. Sen, M. Eli, T.E. Juenger, J.K. McKay, Development of a next-generation NIL library in Arabidopsis thaliana for dissecting complex traits, Genomics 14 (2013) 655.

[160]

A. Pratap, A. Das, S. Kumar, S. Gupta, Current perspectives on introgression breeding in food legumes, Front. Plant Sci. 11 (2021) 589189.

[161]

G. Zhang, The platform of breeding by design based on the SSSL library in rice, Hereditas 41 (2019) 754–760.

[162]

Z. Xi, F. He, R. Zeng, Z. Zhang, X. Ding, W. Li, G. Zhang, Characterization of donor genome contents of backcross progenies detected by SSR markers in rice, Euphytica 160 (2008) 369–377.

[163]

H. Zhu, Y. Li, J. Liang, X. Luan, P. Xu, S. Wang, G. Zhang, G. Liu, Analysis of QTLs on heading date based on single segment substitution lines in rice (Oryza sativa L.), Sci. Rep. 8 (2018) 13232.

[164]

G. Liu, H. Zhu, S. Liu, R. Zeng, Z. Zhang, W. Li, X. Ding, F. Zhao, G. Zhang, Unconditional and conditional QTL mapping for the developmental behavior of tiller number in rice (Oryza sativa L.), Genetica 138 (2010) 885–893.

[165]

Y. Zhang, J. Yang, Z. Shan, S. Chen, W. Qiao, X. Zhu, Q. Xie, H. Zhu, Z. Zhang, R. Zeng, X. Ding, G. Zhang, Substitution mapping of QTLs for blast resistance with SSSLs in rice (Oryza sativa L.), Euphytica 184 (2012) 141–150.

[166]

Y. Zhu, S. Zuo, Z. Chen, X. Chen, G. Li, Y. Zhang, G. Zhang, X. Pan, Identification of two major rice sheath blight resistance QTLs, qSB1-1HJX74 and qSB11HJX74, in field trials using chromosome segment substitution lines, Plant Dis. 98 (2014) 1112–1121.

[167]

T. Yang, S. Zhang, J. Zhao, Q. Liu, Z. Huang, X. Mao, J. Dong, X. Wang, G. Zhang, B. Liu, Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice (Oryza sativa L.), Mol. Breed. 36 (2016) 96.

[168]

Y. Zhou, Y. Xie, J. Cai, C. Liu, H. Zhu, R. Jiang, Y. Zhong, G. Zhang, B. Tan, G. Liu, X. Fu, Z. Liu, S. Wang, G. Zhang, R. Zeng, Substitution mapping of QTLs controlling seed dormancy using single segment substitution lines derived from multiple cultivated rice donors in seven cropping seasons, Theor. Appl. Genet. 130 (2017) 1191–1205.

[169]

T. Zou, H. Zhao, X. Li, M. Zheng, S. Zhang, L. Sun, N. He, X. Pan, Z. Liu, X. Fu, QTLs detection and pyramiding for stigma exsertion rate in wild rice species by using the single-segment substitution lines, Mol. Breed. 40 (2020) 74.

[170]

Q. Tan, T. Zou, M. Zheng, Y. Ni, X. Luan, X. Li, W. Yang, Z. Yang, H. Zhu, R. Zeng, G. Liu, S. Wang, X. Fu, G. Zhang, Substitution mapping of the major quantitative trait loci controlling stigma exsertion rate from Oryza glumaepatula, Rice 13 (2020) 37.

[171]

Q. Tan, C. Wang, X. Luan, L. Zheng, Y. Ni, W. Yang, Z. Yang, H. Zhu, R. Zeng, G. Liu, S. Wang, G. Zhang, Dissection of closely linked QTLs controlling stigma exsertion rate in rice by substitution mapping, Theor. Appl. Genet. (2021), https://doi.org/10.1007/s00122-021-03771–9.

[172]

S. Wang, K. Wu, Q. Yuan, X. Liu, Z. Liu, X. Lin, R. Zeng, H. Zhu, G. Dong, Q. Qian, G. Zhang, X. Fu, Control of grain size, shape and quality by OsSPL16 in rice, Nat. Genet. 44 (2012) 950–954.

[173]

C. Shi, N. Dong, T. Guo, W. Ye, J. Shan, H. Lin, A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway, Plant J. 103 (2020) 1174–1188.

[174]

S. Zhang, L. Zhu, C. Shen, Z. Ji, H. Zhang, T. Zhang, T. Li, J. Yu, N. Yang, Y. He, Y. Tian, K. Wu, J. Wu, N.P. Harberd, Y. Zhao, X. Fu, S. Wang, S. Li, Natural Allelic Variation in a Modulator of Auxin Homeostasis Improves Grain Yield and Nitrogen Use Efficiency in Rice, Plant Cell (2020) koaa037.

[175]

X. Yu, Z. Zhao, X. Zheng, J. Zhou, W. Kong, P. Wang, W. Bai, H. Zheng, H. Zhang, J. Li, J. Liu, Q. Wang, L. Zhang, K. Liu, Y. Yu, X. Guo, J. Wang, Q. Lin, F. Wu, Y. Ren, S. Zhu, X. Zhang, Z. Cheng, C. Lei, S. Liu, X. Liu, Y. Tian, L. Jiang, S. Ge, C. Wu, D. Tao, H. Wang, J. Wan, A selfish genetic element confers non-Mendelian inheritance in rice, Science 360 (2018) 1130–1132.

[176]

C. Fang, L. Li, R. He, D. Wang, M. Wang, Q. Hu, Q. Ma, K. Qin, X. Feng, G. Zhang, X. Fu, Z. Liu, Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice, Rice 12 (2019) 10.

[177]

F. Sui, D. Zhao, H. Zhu, Y. Gong, Z. Tang, X. Huang, G. Zhang, F. Zhao, Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain, J. Exp. Bot. 70 (2019) 2857–2871.

[178]

B. Teng, R. Zeng, Y. Wang, Z. Liu, Z. Zhang, H. Zhu, X. Ding, W. Li, G. Zhang, Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.), Mol. Breed. 30 (2012) 583–595.

[179]

J. Chen, X. Li, C. Cheng, Y. Wang, M. Qin, H. Zhu, R. Zeng, X. Fu, Z. Liu, G. Zhang, Characterization of epistatic interaction of QTLs LH8 and EH3 controlling heading date in rice, Sci. Rep. 4 (2014) 4263.

[180]

M. Qin, X. Zhao, J. Ru, G. Zhang, G. Ye, Bigenic epistasis between QTLs for heading date in rice analyzed using single segment substitution lines, Field Crop Res. 178 (2015) 16–25.

[181]

Z. Yang, L. Jin, H. Zhu, S. Wang, G. Zhang, G. Liu, Analysis of epistasis among QTLs on heading date based on single segment substitution lines in rice, Sci. Rep. 8 (2018) 3059.

[182]

G. Liu, Z. Zhang, H. Zhu, F. Zhao, X. Ding, R. Zeng, W. Li, G. Zhang, Detection of QTLs with additive effects and additive-by-environment interaction effects on panicle number in rice (Oryza sativa L.) with single-segment substitution lines, Theor. Appl. Genet. 116 (2008) 923–931.

[183]

F. Zhao, H. Zhu, R. Zeng, G. Zhang, S. Xu, Detection of additive and additive × environment interaction effects of QTLs for yield-component traits of rice using single-segment substitution lines (SSSLs), Plant Breed. 135 (2016) 452–458.

[184]

G. Liu, H. Zhu, G. Zhang, L. Li, G. Ye, Dynamic analysis of QTLs on tiller number in rice (Oryza sativa L.) with single segment substitution lines, Theor. Appl. Genet. 125 (2012) 143–153.

[185]

Z. Dai, Q. Lu, X. Luan, J. Cai, H. Zhu, Z. Liu, R. Zeng, Z. Zhang, S. Wang, L. Zheng, J. Li, G. Zhang, Development of a platform for breeding by design of CMS lines based on an SSSL library in rice (Oryza sativa L.), Euphytica 205 (2015) 63–72.

[186]

X. Luan, Z. Dai, W. Yang, Q. Tan, Q. Lu, J. Guo, H. Zhu, G. Liu, S. Wang, G. Zhang, Breeding by design of CMS lines on the platform of SSSL library in rice, Mol. Breed. 39 (2019) 126.

[187]

J. Cai, Q. Liao, Z. Dai, H. Zhu, R. Zeng, Z. Zhang, G. Zhang, Allelic differentiations and effects of the Rf3 and Rf4 genes on fertility restoration in rice with wild abortive cytoplasmic male sterility, Biol. Plant. 57 (2013) 274–280.

[188]

Z. Dai, Q. Lu, X. Luan, L. Ouyang, J. Guo, J. Liang, H. Zhu, W. Wang, S. Wang, R. Zeng, Z. Liu, Z. Zhang, X. Zhu, G. Zhang, Development of a platform for breeding by design of CMS restorer lines based on an SSSL library in rice (Oryza sativa L.), Breed. Sci. 66 (2016) 768–775.

[189]

K. Hua, J. Zhang, J.R. Botella, C. Ma, F. Kong, B. Liu, J. Zhu, Perspectives on the Application of Genome-Editing Technologies in Crop Breeding, Mol. Plant 12 (2019) 1047–1059.

[190]

C. Xie, Y. Xu, J. Wan, Crop genome editing: a way to breeding by design, Crop J. 8 (2020) 379–383.

The Crop Journal
Pages 658-668
Cite this article:
Zhang G. Target chromosome-segment substitution: A way to breeding by design in rice. The Crop Journal, 2021, 9(3): 658-668. https://doi.org/10.1016/j.cj.2021.03.001

333

Views

22

Downloads

39

Crossref

33

Web of Science

36

Scopus

0

CSCD

Altmetrics

Received: 02 December 2020
Revised: 31 January 2021
Accepted: 01 April 2021
Published: 06 April 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return