AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Rice bioinformatics in the genomic era: Status and perspectives

Lei Jiaa,bLingjuan XiebSangting LaobQian-Hao ZhucLongjiang Fana,b( )
Hainan Institute of Zhejiang University, Yonyou Industrial Park, Sanya 572025, Hainan, China
Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, Zhejiang, China
CSIRO Agriculture and Food, Black Mountain Laboratories, GPO Box 1700, Canberra, ACT 2601, Australia
Show Author Information

Abstract

Rice is one of cereal crops and a model species for monocots. Since the release of the first draft rice genome sequences in 2002, considerable progress has been achieved in rice genomic researches, thanks to rapid development and efficient utilization of bioinformatics methods and tools. In this review, we summarize the progress of studies of rice genome sequencing and other omics and introduce the well-maintained bioinformatics databases and tools developed for rice genome resources and breeding. After reviewing the history of rice bioinformatics, we use single-cell sequencing and machine learning as examples showing how bioinformatics integrates emerging technologies and how it continues to develop for future rice research.

References

[1]

Q. Yuan, J. Quackenbush, R. Sultana, M. Pertea, S.L. Salzberg, C.R. Buell, Rice Bioinformatics, Analysis of Rice Sequence Data and Leveraging the Data to Other Plant Species, Plant Physiol. 125 (2001) 1166–1174.

[2]

T. Sasaki, B. Burr, International rice genome sequencing project: the effort to completely sequence the rice genome, Curr. Opin. Plant Biol. 3 (2000) 138–142.

[3]

J. Yu, S. Hu, J. Wang, G.K.S. Wong, S. Li, B. Liu, Y. Deng, L. Dai, Y. Zhou, X. Zhang, M. Cao, J. Liu, J. Sun, J. Tang, Y. Chen, X. Huang, W. Lin, C. Ye, W. Tong, L. Cong, J. Geng, Y. Han, L. Li, W. Li, G. Hu, X. Huang, W. Li, J. Li, Z. Liu, L. Li, J. Liu, Q. Qi, J. Liu, L. Li, T. Li, X. Wang, H. Lu, T. Wu, M. Zhu, P. Ni, H. Han, W. Dong, X. Ren, X. Feng, P. Cui, X. Li, H. Wang, X. Xu, W. Zhai, Z. Xu, J. Zhang, S. He, J. Zhang, J. Xu, K. Zhang, X. Zheng, J. Dong, W. Zeng, L. Tao, J. Ye, J. Tan, X. Ren, X. Chen, J. He, D. Liu, W. Tian, C. Tian, H. Xia, Q. Bao, G. Li, H. Gao, T. Cao, J. Wang, W. Zhao, P. Li, W. Chen, X. Wang, Y. Zhang, J. Hu, J. Wang, S. Liu, J. Yang, G. Zhang, Y. Xiong, Z. Li, L. Mao, C. Zhou, Z. Zhu, R. Chen, B. Hao, W. Zheng, S. Chen, W. Guo, G. Li, S. Liu, M. Tao, J. Wang, L. Zhu, L. Yuan, H. Yang, A draft sequence of the rice genome (Oryza sativa L. ssp. indica), Science 296 (2002) 79–92.

[4]

S.A. Goff, D. Ricke, T.H. Lan, G. Presting, R. Wang, M. Dunn, J. Glazebrook, A. Sessions, P. Oeller, H. Varma, D. Hadley, D. Hutchison, C. Martin, F. Katagiri, B.M. Lange, T. Moughamer, Y. Xia, P. Budworth, J. Zhong, T. Miguel, U. Paszkowski, S. Zhang, M. Colbert, W. Sun, L. Chen, B. Cooper, S. Park, T.C. Wood, L. Mao, P. Quail, R. Wing, R. Dean, Y. Yu, A. Zharkikh, R. Shen, S. Sahasrabudhe, A. Thomas, R. Cannings, A. Gutin, D. Pruss, J. Reid, S. Tavtigian, J. Mitchell, G. Eldredge, T. Scholl, R.M. Miller, S. Bhatnagar, N. Adey, T. Rubano, N. Tusneem, R. Robinson, J. Feldhaus, T. Macalma, A. Oliphant, S. Briggs, A draft sequence of the rice genome (Oryza sativa L. ssp. japonica), Science 296 (2002) 92–100.

[5]

T. Matsumoto, J. Wu, H. Kanamori, Y. Katayose, M. Fujisawa, N. Namiki, H. Mizuno, K. Yamamoto, B.A. Antonio, T. Baba, K. Sakata, Y. Nagamura, H. Aoki, K. Arikawa, K. Arita, T. Bito, Y. Chiden, N. Fujitsuka, R. Fukunaka, M. Hamada, C. Harada, A. Hayashi, S. Hijishita, M. Honda, S. Hosokawa, Y. Ichikawa, A. Idonuma, M. Iijima, M. Ikeda, M. Ikeno, K. Ito, S. Ito, T. Ito, Y. Ito, Y. Ito, A. Iwabuchi, K. Kamiya, W. Karasawa, K. Kurita, S. Katagiri, A. Kikuta, H. Kobayashi, N. Kobayashi, K. MacHita, T. Maehara, M. Masukawa, T. Mizubayashi, Y. Mukai, H. Nagasaki, Y. Nagata, S. Naito, M. Nakashima, Y. Nakama, Y. Nakamichi, M. Nakamura, A. Meguro, M. Negishi, I. Ohta, T. Ohta, M. Okamoto, N. Ono, S. Saji, M. Sakaguchi, K. Sakai, M. Shibata, T. Shimokawa, J. Song, Y. Takazaki, K. Terasawa, M. Tsugane, K. Tsuji, S. Ueda, K. Waki, H. Yamagata, M. Yamamoto, S. Yamamoto, H. Yamane, S. Yoshiki, R. Yoshihara, K. Yukawa, H. Zhong, M. Yano, T. Sasaki, Q. Yuan, S. Ouyang, J. Liu, K.M. Jones, K. Gansberger, K. Moffat, J. Hill, J. Bera, D. Fadrosh, S. Jin, S. Johri, M. Kim, L. Overton, M. Reardon, T. Tsitrin, H. Vuong, B. Weaver, A. Ciecko, L. Tallon, J. Jackson, G. Pai, S. Van Aken, T. Utterback, S. Reidmuller, T. Feldblyum, J. Hsiao, V. Zismann, S. Iobst, A.R. De Vazeille, C.R. Buell, K. Ying, Y. Li, T. Lu, Y. Huang, Q. Zhao, Q. Feng, L. Zhang, J. Zhu, Q. Weng, J. Mu, Y. Lu, D. Fan, Y. Liu, J. Guan, Y. Zhang, S. Yu, X. Liu, Y. Zhang, G. Hong, B. Han, N. Choisne, N. Demange, G. Orjeda, S. Samain, L. Cattolico, E. Pelletier, A. Couloux, B. Segurens, P. Wincker, A. D’Hont, C. Scarpelli, J. Weissenbach, M. Salanoubat, F. Quetier, Y. Yu, H.R. Kim, T. Rambo, J. Currie, K. Collura, M. Luo, T.J. Yang, J.S.S. Ammiraju, F. Engler, C. Soderlund, R.A. Wing, L.E. Palmer, M. De La Bastide, L. Spiegel, L. Nascimento, T. Zutavern, A. O’Shaughnessy, S. Dike, N. Dedhia, R. Preston, V. Balija, W.R. McCombie, T.Y. Chow, H.H. Chen, M.C. Chung, C.S. Chen, J.F. Shaw, H.P. Wu, K.J. Hsiao, Y.T. Chao, M.K. Chu, C.H. Cheng, A.L. Hour, P.F. Lee, S.J. Lin, Y.C. Lin, J.Y. Liou, S.M. Liu, Y.I. Hsing, S. Raghuvanshi, A. Mohanty, A.K. Bharti, A. Gaur, V. Gupta, D. Kumar, V. Ravi, S. Vij, A. Kapur, P. Khurana, P. Khurana, J.P. Khurana, A.K. Tyagi, K. Gaikwad, A. Singh, V. Dalal, S. Srivastava, A. Dixit, A.K. Pal, I.A. Ghazi, M. Yadav, A. Pandit, A. Bhargava, K. Sureshbabu, K. Batra, T.R. Sharma, T. Mohapatra, N.K. Singh, J. Messing, A.B. Nelson, G. Fuks, S. Kavchok, G. Keizer, E.L.V. Llaca, R. Song, B. Tanyolac, S. Young, K. Ho, J.H. Hahn, G. Sangsakoo, A. Vanavichit, L.A.T. De Mattos, P.D. Zimmer, G. Malone, O. Dellagostin, A.C. De Oliveira, M. Bevan, I. Bancroft, P. Minx, H. Cordum, R. Wilson, Z. Cheng, W. Jin, J. Jiang, S.A. Leong, H. Iwama, T. Gojobori, T. Itoh, Y. Niimura, Y. Fujii, T. Habara, H. Sakai, Y. Sato, G. Wilson, K. Kumar, S. McCouch, N. Juretic, D. Hoen, S. Wright, R. Bruskiewich, T. Bureau, A. Miyao, H. Hirochika, T. Nishikawa, K.I. Kadowaki, M. Sugiura, B. Burr, The map-based sequence of the rice genome, Nature 436 (2005) 793–800.

[6]

J. Yu, J. Wang, W. Lin, S. Li, H. Li, J. Zhou, P. Ni, W. Dong, S. Hu, C. Zeng, J. Zhang, Y. Zhang, R. Li, Z. Xu, S. Li, X. Li, H. Zheng, L. Cong, L. Lin, J. Yin, J. Geng, G. Li, J. Shi, J. Liu, H. Lv, J. Li, J. Wang, Y. Deng, L. Ran, X. Shi, X. Wang, Q. Wu, C. Li, X. Ren, J. Wang, X. Wang, D. Li, D. Liu, X. Zhang, Z. Ji, W. Zhao, Y. Sun, Z. Zhang, J. Bao, Y. Han, L. Dong, J. Ji, P. Chen, S. Wu, J. Liu, Y. Xiao, D. Bu, J. Tan, L.i. Yang, C. Ye, J. Zhang, J. Xu, Y. Zhou, Y. Yu, B. Zhang, S. Zhuang, H. Wei, B. Liu, M. Lei, H. Yu, Y. Li, H. Xu, S. Wei, X. He, L. Fang, Z. Zhang, Y. Zhang, X. Huang, Z. Su, W. Tong, J. Li, Z. Tong, S. Li, J. Ye, L. Wang, L. Fang, T. Lei, C. Chen, H. Chen, Z. Xu, H. Li, H. Huang, F. Zhang, H. Xu, N.a. Li, C. Zhao, S. Li, L. Dong, Y. Huang, L. Li, Y. Xi, Q. Qi, W. Li, B.o. Zhang, W. Hu, Y. Zhang, X. Tian, Y. Jiao, X. Liang, J. Jin, L. Gao, W. Zheng, B. Hao, S. Liu, W. Wang, L. Yuan, M. Cao, J. McDermott, R. Samudrala, J. Wang, G.-S. Wong, H. Yang, J. Bennetzen, The genomes of oryza sativa: a history of duplications, PLoS Biol. 3 (2005) e38.

[7]

S. Ouyang, W. Zhu, J. Hamilton, H. Lin, M. Campbell, K. Childs, F. Thibaud-Nissen, R.L. Malek, Y. Lee, L. Zheng, J. Orvis, B. Haas, J. Wortman, R.C. Buell, The TIGR rice genome annotation resource: improvements and new features, Nucleic Acids Res. 35 (2007) 8–11.

[8]

T. Tanaka, B.A. Antonio, S. Kikuchi, T. Matsumoto, Y. Nagamura, H. Numa, H. Sakai, J. Wu, T. Itoh, T. Sasaki, R. Aono, Y. Fujii, T. Habara, E. Harada, M. Kanno, Y. Kawahara, H. Kawashima, H. Kubooka, A. Matsuya, H. Nakaoka, N. Saichi, R. Sanbonmatsu, Y. Sato, Y. Shinso, M. Suzuki, J. Takeda, M. Tanino, F. Todokoro, K. Yamaguchi, N. Yamamoto, C. Yamasaki, T. Imanishi, T. Okido, M. Tada, K. Ikeo, Y. Tateno, T. Gojobori, Y.C. Lin, F.J. Wei, Y. Hsing, Q. Zhao, B. Han, M.R. Kramer, R.W. McCombie, D. Lonsdale, C.C. O’donovan, E.J. Whitfield, R. Apweiler, K.O. Koyanagi, J.P. Khurana, S. Raghuvanshi, N.K. Singh, A.K. Tyagi, G. Haberer, M. Fujisawa, S. Hosokawa, Y. Ito, H. Ikawa, M. Shibata, M. Yamamoto, R.M. Bruskiewich, D.R. Hoen, T.E. Bureau, N. Namiki, H. Ohyanagi, Y. Sakai, S. Nobushima, K. Sakata, R.A. Barrero, Y. Sato, A. Souvorov, B. Smith-White, T. Tatusova, S. An, G. An, S. Oota, G. Fuks, J. Messing, K.R. Christie, D. Lieberherr, H. Kim, A. Zuccolo, R.A. Wing, K. Nobuta, P.J. Green, C. Lu, B.C. Meyers, C. Chaparro, B. Piegu, O. Panaud, M. Echeverria, The rice annotation project database (RAP-DB): 2008 update, Nucleic Acids Res. 36 (2007) D1028–D1033.

[9]

Y. Kawahara, M. de la Bastide, J.P. Hamilton, H. Kanamori, W.R. McCombie, S. Ouyang, D.C. Schwartz, T. Tanaka, J. Wu, S. Zhou, K.L. Childs, R.M. Davidson, H. Lin, L. Quesada-Ocampo, B. Vaillancourt, H. Sakai, S.S. Lee, J. Kim, H. Numa, T. Itoh, C.R. Buell, T. Matsumoto, Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data, Rice 6 (2013) 4.

[10]

Z.Y. Gao, S.C. Zhao, W.M. He, L.B. Guo, Y.L. Peng, J.J. Wang, X.S. Guo, X.M. Zhang, Y.C. Rao, C. Zhang, G.J. Dong, F.Y. Zheng, C.X. Lu, J. Hu, Q. Zhou, H.J. Liu, H.Y. Wu, J. Xu, P.X. Ni, D.L. Zeng, D.H. Liu, P. Tian, L.H. Gong, C. Ye, G.H. Zhang, J. Wang, F.K. Tian, D.W. Xue, Y. Liao, L. Zhu, M.S. Chen, J.Y. Li, S.H. Cheng, G.Y. Zhang, J. Wang, Q. Qian, Dissecting Yield-associated Loci in Super Hybrid Rice by Resequencing Recombinant Inbred Lines and Improving Parental Genome Sequences, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 14492–14497.

[11]

M. Wang, Y. Yu, G. Haberer, P.R. Marri, C. Fan, J.L. Goicoechea, A. Zuccolo, X. Song, D. Kudrna, J.S.S. Ammiraju, R.M. Cossu, C. Maldonado, J. Chen, S. Lee, N. Sisneros, K. de Baynast, W. Golser, M. Wissotski, W. Kim, P. Sanchez, M.-N. Ndjiondjop, K. Sanni, M. Long, J. Carney, O. Panaud, T. Wicker, C.A. Machado, M. Chen, K.F.X. Mayer, S. Rounsley, R.A. Wing, The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication, Nat. Genet. 46 (2014) 982–988.

[12]

Q.J. Zhang, T. Zhu, E.H. Xia, C. Shi, Y.L. Liu, Y. Zhang, Y. Liu, W.K. Jiang, Y.J. Zhao, S.Y. Mao, L.P. Zhang, H. Huang, J.Y. Jiao, P.Z. Xu, Q.Y. Yao, F.C. Zeng, L.L. Yang, J. Gao, D.Y. Tao, Y.J. Wang, J.L. Bennetzen, L.Z. Gao, Rapid diversification of five Oryza AA genomes associated with rice adaptation, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) E4954–E4962.

[13]

M.C. Schatz, L.G. Maron, J.C. Stein, A. Hernandez Wences, J. Gurtowski, E. Biggers, H. Lee, M. Kramer, E. Antoniou, E. Ghiban, M.H. Wright, J. ming Chia, D. Ware, S.R. McCouch, W.R. McCombie, Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica, Genome Biol. 15 (2014) 506.

[14]

M.M. Reddy, K. Ulaganathan, Draft genome sequence of Oryza sativa elite indica cultivar RP Bio-226, Front. Plant Sci. 6 (2015) 896.

[15]

H. Sakai, H. Kanamori, Y. Arai-Kichise, M. Shibata-Hatta, K. Ebana, Y. Oono, K. Kurita, H. Fujisawa, S. Katagiri, Y. Mukai, M. Hamada, T. Itoh, T. Matsumoto, Y. Katayose, K. Wakasa, M. Yano, J. Wu, Construction of pseudomolecule sequences of the aus rice cultivar Kasalath for comparative genomics of Asian cultivated rice, DNA Res. 21 (2014) 397–405.

[16]

J. Shendure, S. Balasubramanian, G.M. Church, W. Gilbert, J. Rogers, J.A. Schloss, R.H. Waterston, DNA sequencing at 40: past, present and future, Nature 550 (2017) 345–353.

[17]

J. Zhang, L.L. Chen, F. Xing, D.A. Kudrna, W. Yao, D. Copetti, T. Mu, W. Li, J.M. Song, W. Xie, S. Lee, J. Talag, L. Shao, Y. An, C.L. Zhang, Y. Ouyang, S. Sun, W.B. Jiao, F. Lv, B. Du, M. Luo, C.E. Maldonado, J.L. Goicoechea, L. Xiong, C. Wu, Y. Xing, D.X. Zhou, S. Yu, Y. Zhao, G. Wang, Y. Yu, Y. Luo, Z.W. Zhou, B.E.P. Hurtado, A. Danowitz, R.A. Wing, Q. Zhang, Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) E5163–E5171.

[18]

H. Du, Y. Yu, Y. Ma, Q. Gao, Y. Cao, Z. Chen, B. Ma, M. Qi, Y. Li, X. Zhao, J. Wang, K. Liu, P. Qin, X. Yang, L. Zhu, S. Li, C. Liang, Sequencing and de novo assembly of a near complete indica rice genome, Nat. Commun. 8 (2017) 15324.

[19]

Q. Zhang, Z. Liang, X. Cui, C. Ji, Y. Li, P. Zhang, J. Liu, A. Riaz, P. Yao, M. Liu, Y. Wang, T. Lu, H. Yu, D. Yang, H. Zheng, X. Gu, N6-methyladenine DNA methylation in japonica and indica rice genomes and its association with gene expression, plant development, and stress responses, Mol. Plant 11 (2018) 1492–1508.

[20]

H.B. Mahesh, M.D. Shirke, S. Singh, A. Rajamani, S. Hittalmani, G.L. Wang, M. Gowda, Indica rice genome assembly, annotation and mining of blast disease resistance genes, BMC Genomics 17 (2016) 242.

[21]

P. Chen, X. Jing, B. Liao, Y. Zhu, J. Xu, R. Liu, Y. Zhao, X. Li, BioNano genome map resource for Oryza sativa ssp. japonica and indica and its application in rice genome sequence correction and gap filling, Mol. Plant 10 (2017) 895–898.

[22]

J.C. Stein, Y. Yu, D. Copetti, D.J. Zwickl, L. Zhang, C. Zhang, K. Chougule, D. Gao, A. Iwata, J.L. Goicoechea, S. Wei, J. Wang, Y. Liao, M. Wang, J. Jacquemin, C. Becker, D. Kudrna, J. Zhang, C.E.M. Londono, X. Song, S. Lee, P. Sanchez, A. Zuccolo, J.S.S. Ammiraju, J. Talag, A. Danowitz, L.F. Rivera, A.R. Gschwend, C. Noutsos, C.C. Wu, S.M. Kao, J.W. Zeng, F.J. Wei, Q. Zhao, Q. Feng, M. El Baidouri, M.C. Carpentier, E. Lasserre, R. Cooke, D. Da Rosa Farias, L.C. da Maia, R.S. dos Santos, K.G. Nyberg, K.L. McNally, R. Mauleon, N. Alexandrov, J. Schmutz, D. Flowers, C. Fan, D. Weigel, K.K. Jena, T. Wicker, M. Chen, B. Han, R. Henry, Y.I.C. Hsing, N. Kurata, A.C. de Oliveira, O. Panaud, S.A. Jackson, C.A. Machado, M.J. Sanderson, M. Long, D. Ware, R.A. Wing, Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza, Nat. Genet. 50 (2018) 285–296.

[23]

L. Wang, L. Zhao, X. Zhang, Q. Zhang, Y. Jia, G. Wang, S. Li, D. Tian, W.H. Li, S. Yang, Large-scale identification and functional analysis of NLR genes in blast resistance in the Tetep rice genome sequence, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 8479–18487.

[24]

H. Du, C. Liang, Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads, Nat. Commun. 10 (2019) 5360.

[25]

T. Tanaka, R. Nishijima, S. Teramoto, Y. Kitomi, T. Hayashi, Y. Uga, T. Kawakatsu, De novo genome assembly of the indica rice variety IR64 using linked-read sequencing and nanopore sequencing, G3-Genes Genomes Genet. 10 (2020) 1495–1501.

[26]

L. Lu, J. Chen, S.M.C. Robb, Y. Okumoto, J.E. Stajich, S.R. Wessler, Tracking the genome-wide outcomes of a transposable element burst over decades of amplification, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) e10550–e10559.

[27]

S.J. Nie, Y.Q. Liu, C.C. Wang, S.W. Gao, T.T. Xu, Q. Liu, H.L. Chang, Y.B. Chen, P.C. Yan, W. Peng, T.Q. Zheng, J.L. Xu, Z.K. Li, Data Descriptor: assembly of an early-matured japonica (Geng) rice genome, Suijing18, based on PacBio and Illumina sequencing, Sci. Data 4 (2017) 170195.

[28]

X. Li, L. Wu, J. Wang, J. Sun, X. Xia, X. Geng, X. Wang, Z. Xu, Q. Xu, Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci, BMC Biol. 16 (2018) 102.

[29]

R. Jain, J. Jenkins, S. Shu, M. Chern, J.A. Martin, D. Copetti, P.Q. Duong, N.T. Pham, D.A. Kudrna, J. Talag, W.S. Schackwitz, A.M. Lipzen, D. Dilworth, D. Bauer, J. Grimwood, C.R. Nelson, F. Xing, W. Xie, K.W. Barry, R.A. Wing, J. Schmutz, G. Li, P.C. Ronald, Genome sequence of the model rice variety KitaakeX, BMC Genomics 20 (2019) 905.

[30]

A.C. Read, M.J. Moscou, A.V. Zimin, G. Pertea, R.S. Meyer, M.D. Purugganan, J.E. Leach, L.R. Triplett, S.L. Salzberg, A.J. Bogdanove, G. Coaker, Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing, PLoS Genet. 16 (2020) e1008571.

[31]

J.Y. Choi, Z.N. Lye, S.C. Groen, X. Dai, P. Rughani, S. Zaaijer, E.D. Harrington, S. Juul, M.D. Purugganan, Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice, Genome Biol. 21 (2020) 21.

[32]

C. Monat, B. Pera, M.N. Ndjiondjop, M. Sow, C. Tranchant-Dubreuil, L. Bastianelli, A. Ghesquière, F. Sabot, De novo assemblies of three Oryza glaberrima accessions provide first insights about pan-genome of African rices, Genome Biol. Evol. 9 (2017) 1–6.

[33]

X. Ma, J. Fan, Y. Wu, S. Zhao, X. Zheng, C. Sun, L. Tan, Whole-genome de novo assemblies reveal extensive structural variations and dynamic organelle-to-nucleus DNA transfers in Asian and African rice, Plant J. 104 (2020) 596–612.

[34]

L. Mao, M. Chen, Q. Chu, L. Jia, M.H. Sultana, D. Wu, X. Kong, J. Qiu, C.Y. Ye, Q.H. Zhu, X. Chen, L. Fan, RiceRelativesGD: a genomic database of rice relatives for rice research, Database 2019 (2019), https://doi.org/10.1093/database/baz110 baz110.

[35]

J. Chen, Q. Huang, D. Gao, J. Wang, Y. Lang, T. Liu, B. Li, Z. Bai, J. Luis Goicoechea, C. Liang, C. Chen, W. Zhang, S. Sun, Y. Liao, X. Zhang, L. Yang, C. Song, M. Wang, J. Shi, G. Liu, J. Liu, H. Zhou, W. Zhou, Q. Yu, N. An, Y. Chen, Q. Cai, B. Wang, B. Liu, J. Min, Y. Huang, H. Wu, Z. Li, Y. Zhang, Y. Yin, W. Song, J. Jiang, S.A. Jackson, R.A. Wing, J. Waang, M. Chen, J. Wang, M. Chen, Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution, Nat. Commun. 4 (2013) 1595.

[36]

M. Brozynska, D. Copetti, A. Furtado, R.A. Wing, D. Crayn, G. Fox, R. Ishikawa, R.J. Henry, Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice, Plant Biotechnol. J. 15 (2017) 765–774.

[37]

Y. Zhang, S. Zhang, H. Liu, B. Fu, L. Li, M. Xie, Y. Song, X. Li, J. Cai, W. Wan, L. Kui, H. Huang, J. Lyu, Y. Dong, W. Wang, L. Huang, J. Zhang, Q. Yang, Q. Shan, Q. Li, W. Huang, D. Tao, M. Wang, M. Chen, Y. Yu, R.A. Wing, W. Wang, F. Hu, Genome and comparative transcriptomics of African wild rice Oryza longistaminata provide insights into molecular mechanism of rhizomatousness and self-incompatibility, Mol. Plant 8 (2015) 1683–1686.

[38]

S. Reuscher, T. Furuta, K. Bessho-Uehara, M. Cosi, K.K. Jena, A. Toyoda, A. Fujiyama, N. Kurata, M. Ashikari, Assembling the genome of the African wild rice Oryza longistaminata by exploiting synteny in closely related Oryza species, Commun. Biol. 1 (2018) 162.

[39]

W. Li, K. Li, Q. Zhang, T. Zhu, Y. Zhang, C. Shi, Y. Liu, E. Xia, J. Jiang, C. Shi, L. Zhang, H. Huang, Y. Tong, Y. Liu, D. Zhang, Y. Zhao, W. Jiang, Y. Zhao, S. Mao, J. Jiao, P. Xu, L. Yang, G. Yin, L. Gao, Improved hybrid de novo genome assembly and annotation of African wild rice, Oryza longistaminata, from Illumina and PacBio sequencing reads, Plant Genome (2020), https://doi.org/10.1002/tpg2.v13.110.1002/tpg2.20001.

[40]

W. Li, Q. Zhang, T. Zhu, Y. Tong, K. Li, C. Shi, Y. Zhang, Y. Liu, J. Jiang, Y. Liu, E. Xia, H. Huang, L. Zhang, D. Zhang, C. Shi, W. Jiang, Y. Zhao, S. Mao, J. Jiao, P. Xu, L. Yang, L. Gao, Draft genomes of two outcrossing wild rice, Oryza rufipogon and O. longistaminata, reveal genomic features associated with mating-system evolution, Plant Direct (2020), https://doi.org/10.1002/pld3.v4.610.1002/pld3.232.

[41]

J. Wang, S. Yan, S. Luo, W. Deng, X. Shen, D. Chen, H. Chen, The evolution study on Oryza rufipogon. dw by whole-genome sequencing, J. Genet. 98 (2019) 90.

[42]

X. Xie, H. Du, H. Tang, J. Tang, X. Tan, W. Liu, T. Li, Z. Lin, C. Liang, Y.-G. Liu, A chromosome-level genome assembly of the wild rice Oryza rufipogon facilitates tracing the origins of Asian cultivated rice, Sci. China Life Sci. 64 (2021) 282–293.

[43]

W. Li, K. Li, Y. Huang, C. Shi, W. Hu, Y. Zhang, Q.J. Zhang, E. Xia, G. Hutang, X.G. Zhu, Y.L. Liu, Y. Liu, Y. Tong, T. Zhu, H. Huang, Y. Dan Zhang, W. Zhao, J. Jiang, Y. Yuan, C.W. Niu, L.G. Gao, SMRT sequencing of the Oryza rufipogon genome reveals the genomic basis of rice adaptation, Commun. Biol. 3 (2020) 167.

[44]

Z. Wu, D. Fang, R. Yang, F. Gao, X. An, X. Zhuo, Y. Li, C. Yi, T. Zhang, C. Liang, P. Cui, Z. Cheng, Q. Luo, De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution, Commun. Biol. 1 (2018) 84.

[45]

C. Shi, W. Li, Q.J. Zhang, Y. Zhang, Y. Tong, K. Li, Y.L. Liu, L.Z. Gao, The draft genome sequence of an upland wild rice species, Oryza granulata, Sci. Data 7 (2020) 131.

[46]

J. Sun, D. Ma, L. Tang, M. Zhao, G. Zhang, W. Wang, J. Song, X. Li, Z. Liu, W. Zhang, Q. Xu, Y. Zhou, J. Wu, T. Yamamoto, F. Dai, Y. Lei, S. Li, G. Zhou, H. Zheng, Z. Xu, W. Chen, Population genomic analysis and de novo assembly reveal the origin of weedy rice as an evolutionary game, Mol. Plant 12 (2019) 632–647.

[47]

L. Guo, J. Qiu, Z. Han, Z. Ye, C. Chen, C. Liu, X. Xin, CY. Ye, Y.Y. Wang, H. Xie, Y. Wang, J. Bao, S. Tang, J. Xu, Y. Gui, F. Fu, W. Wang, X. Zhang, Q. Zhu, X. Guang, C. Wang, H. Cui, D. Cai, S. Ge, G.A. Tuskan, X. Yang, Q. Qian, S.Y. He, J. Wang, X.P. Zhou, L. Fan, A host plant genome (Zizania latifolia) after a century-long endophyte infection, Plant J. 83 (2015) 600–609.

[48]

L. Guo, J. Qiu, C. Ye, G. Jin, L. Mao, H. Zhang, X. Yang, Q. Peng, Y. Wang, L. Jia, Z. Lin, G. Li, F. Fu, C. Liu, L. Chen, E. Shen, W. Wang, Q. Chu, D. Wu, S. Wu, C. Xia, Y. Zhang, X. Zhou, L. Wang, L. Wu, W. Song, Y. Wang, Q. Shu, D. Aoki, E. Yumoto, T. Yokota, K. Miyamoto, K. Okada, D.S. Kim, D. Cai, C. Zhang, Y. Lou, Q. Qian, H. Yamaguchi, H. Yamane, C.H. Kong, M.P. Timko, L. Bai, L. Fan, Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed, Nat. Commun. 8 (2017) 1031.

[49]

C.Y. Ye, D. Wu, L. Mao, L. Jia, J. Qiu, S. Lao, M. Chen, B. Jiang, W. Tang, Q. Peng, L. Pan, L. Wang, X. Feng, L. Guo, C. Zhang, E.A. Kellogg, K.M. Olsen, L. Bai, L. Fan, The genomes of the allohexaploid Echinochloa crus-galli and its progenitors provide insights into polyploidization-driven adaptation, Mol. Plant 13 (2020) 1298–1310.

[50]

X. Huang, Q. Feng, Q. Qian, Q. Zhao, L. Wang, A. Wang, J. Guan, D. Fan, Q. Weng, T. Huang, G. Dong, T. Sang, B. Han, High-throughput genotyping by whole-genome resequencing, Genome Res. 19 (2009) 1068–1076.

[51]

W. Xie, Q. Feng, H. Yu, X. Huang, Q. Zhao, Y. Xing, S. Yu, B. Han, Q. Zhang, Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 10578–10583.

[52]

X. Huang, N. Kurata, X. Wei, Z.-X. Wang, A. Wang, Q. Zhao, Y. Zhao, K. Liu, H. Lu, W. Li, Y. Guo, Y. Lu, C. Zhou, D. Fan, Q. Weng, C. Zhu, T. Huang, L. Zhang, Y. Wang, L. Feng, H. Furuumi, T. Kubo, T. Miyabayashi, X. Yuan, Q. Xu, G. Dong, Q. Zhan, C. Li, A. Fujiyama, A. Toyoda, T. Lu, Q. Feng, Q. Qian, J. Li, B. Han, A map of rice genome variation reveals the origin of cultivated rice, Nature 490 (2012) 497–501.

[53]

Z. Li, B.Y. Fu, Y.M. Gao, W.S. Wang, J.L. Xu, F. Zhang, X.Q. Zhao, T.Q. Zheng, Y.L. Zhou, G. Zhang, S. Tai, J. Xu, W. Hu, M. Yang, Y. Niu, M. Wang, Y. Li, L. Bian, X. Han, J. Li, X. Liu, B. Wang, K.L. McNally, M.E.B. Naredo, S.M.Q. Mercado, M.C. Rellosa, R.A. Reaño, G.L.S. Capilit, F.C. de Guzman, J. Ali, N.R.S. Hamilton, R.P. Mauleon, N.N. Alexandrov, H. Leung, The 3000 rice genomes project, GigaScience 3 (2014) 7.

[54]

W. Wang, R. Mauleon, Z. Hu, D. Chebotarov, S. Tai, Z. Wu, M. Li, T. Zheng, R.R. Fuentes, F. Zhang, L. Mansueto, D. Copetti, M. Sanciangco, K.C. Palis, J. Xu, C. Sun, B. Fu, H. Zhang, Y. Gao, X. Zhao, F. Shen, X. Cui, H. Yu, Z. Li, M. Chen, J. Detras, Y. Zhou, X. Zhang, Y. Zhao, D. Kudrna, C. Wang, R. Li, B. Jia, J. Lu, X. He, Z. Dong, J. Xu, Y. Li, M. Wang, J. Shi, J. Li, D. Zhang, S. Lee, W. Hu, A. Poliakov, I. Dubchak, V.J. Ulat, F.N. Borja, J.R. Mendoza, J. Ali, J. Li, Q. Gao, Y. Niu, Z. Yue, M.E.B. Naredo, J. Talag, X. Wang, J. Li, X. Fang, Y. Yin, J.-C. Glaszmann, J. Zhang, J. Li, R.S. Hamilton, R.A. Wing, J. Ruan, G. Zhang, C. Wei, N. Alexandrov, K.L. McNally, Z. Li, H. Leung, Genomic variation in 3010 diverse accessions of Asian cultivated rice, Nature 557 (2018) 43–49.

[55]

Y. Zhu, K. Chen, X. Mi, T. Chen, J. Ali, G. Ye, J. Xu, Z. Li, Q. Qian, Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice, PLoS ONE 10 (2015) e0145704.

[56]

X. Huang, S. Yang, J. Gong, Q. Zhao, Q. Feng, Q. Zhan, Y. Zhao, W. Li, B. Cheng, J. Xia, N. Chen, T. Huang, L. Zhang, D. Fan, J. Chen, C. Zhou, Y. Lu, Q. Weng, B. Han, Genomic architecture of heterosis for yield traits in rice, Nature 537 (2016) 629–633.

[57]

X. Li, Z. Chen, G. Zhang, H. Lu, P. Qin, M. Qi, Y. Yu, B. Jiao, X. Zhao, Q. Gao, H. Wang, Y. Wu, J. Ma, L. Zhang, Y. Wang, L. Deng, S. Yao, Z. Cheng, D. Yu, L. Zhu, Y. Xue, C. Chu, A. Li, S. Li, C. Liang, Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions, Sci. China Life Sci. 63 (2020) 1688–1702.

[58]

X. Huang, S. Yang, J. Gong, Y. Zhao, Q. Feng, H. Gong, W. Li, Q. Zhan, B. Cheng, J. Xia, N. Chen, Z. Hao, K. Liu, C. Zhu, T. Huang, Q. Zhao, L. Zhang, D. Fan, C. Zhou, Y. Lu, Q. Weng, Z.X. Wang, J. Li, B. Han, Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis, Nat. Commun. 6 (2015) 6258.

[59]

J. Qiu, L. Jia, D. Wu, X. Weng, L. Chen, J. Sun, M. Chen, L. Mao, B. Jiang, C. Ye, G.M. Turra, L. Guo, G. Ye, Q.H. Zhu, T. Imaizumi, B.K. Song, L. Scarabel, A. Merotto, K.M. Olsen, L. Fan, Diverse genetic mechanisms underlie worldwide convergent rice feralization, Genome Biol. 21 (2020) 70.

[60]

X. Huang, X. Wei, T. Sang, Q. Zhao, Q. Feng, Y. Zhao, C. Li, C. Zhu, T. Lu, Z. Zhang, M. Li, D. Fan, Y. Guo, A. Wang, L. Wang, L. Deng, W. Li, Y. Lu, Q. Weng, K. Liu, T. Huang, T. Zhou, Y. Jing, W. Li, Z. Lin, E.S. Buckler, Q. Qian, Q.F. Zhang, J. Li, B. Han, Genome-wide asociation studies of 14 agronomic traits in rice landraces, Nat. Genet. 42 (2010) 961–967.

[61]

X. Xu, X. Liu, S. Ge, J.D. Jensen, F. Hu, X. Li, Y. Dong, R.N. Gutenkunst, L. Fang, L. Huang, J. Li, W. He, G. Zhang, X. Zheng, F. Zhang, Y. Li, C. Yu, K. Kristiansen, X. Zhang, J. Wang, M. Wright, S. McCouch, R. Nielsen, J. Wang, W. Wang, Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes, Nat. Biotechnol. 30 (2012) 105–111.

[62]

X. Huang, Y. Zhao, X. Wei, C. Li, A. Wang, Q. Zhao, W. Li, Y. Guo, L. Deng, C. Zhu, D. Fan, Y. Lu, Q. Weng, K. Liu, T. Zhou, Y. Jing, L. Si, G. Dong, T. Huang, T. Lu, Q. Feng, Q. Qian, J. Li, B. Han, Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm, Nat. Genet. 44 (2012) 32–39.

[63]

W. Chen, Y. Gao, W. Xie, L. Gong, K. Lu, W. Wang, Y. Li, X. Liu, H. Zhang, H. Dong, W. Zhang, L. Zhang, S. Yu, G. Wang, X. Lian, J. Luo, Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism, Nat. Genet. 46 (2014) 714–721.

[64]

X. Huang, Q. Zhao, B. Han, Comparative population genomics reveals strong divergence and infrequent introgression between Asian and African rice, Mol. Plant 8 (2015) 958–960.

[65]

K. Yano, E. Yamamoto, K. Aya, H. Takeuchi, P.C. Lo, L. Hu, M. Yamasaki, S. Yoshida, H. Kitano, K. Hirano, M. Matsuoka, Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice, Nat. Genet. 48 (2016) 927–934.

[66]

H. Wang, X. Xu, F.G. Vieira, Y. Xiao, Z. Li, J. Wang, R. Nielsen, C. Chu, The power of inbreeding: NGS-based GWAS of rice reveals convergent evolution during rice domestication, Mol. Plant 9 (2016) 975–985.

[67]

J. Qiu, Y. Zhou, L. Mao, C. Ye, W. Wang, J. Zhang, Y. Yu, F. Fu, Y. Wang, F. Qian, T. Qi, S. Wu, M.H. Sultana, Y.N. Cao, Y. Wang, M.P. Timko, S. Ge, L. Fan, Y. Lu, Genomic variation associated with local adaptation of weedy rice during de-domestication, Nat. Commun. 8 (2017) 15323.

[68]

L.F. Li, Y.L. Li, Y. Jia, A.L. Caicedo, K.M. Olsen, Signatures of adaptation in the weedy rice genome, Nat. Genet. 49 (2017) 811–814.

[69]

P. Cubry, C. Tranchant-Dubreuil, A.C. Thuillet, C. Monat, M.-N. Ndjiondjop, K. Labadie, C. Cruaud, S. Engelen, N. Scarcelli, B. Rhoné, C. Burgarella, C. Dupuy, P. Larmande, P. Wincker, O. François, F. Sabot, Y. Vigouroux, The rise and fall of African rice cultivation revealed by analysis of 246 new genomes, Curr. Biol. 28 (2018) 2274-2282.e6.

[70]

H. Xia, Z. Luo, J. Xiong, X. Ma, Q. Lou, H. Wei, J. Qiu, H. Yang, G. Liu, L. Fan, L. Chen, L. Luo, Bi-directional selection in upland rice leads to its adaptive differentiation from lowland rice in drought resistance and productivity, Mol. Plant 12 (2019) 170–184.

[71]

M. Shenton, M. Kobayashi, S. Terashima, H. Ohyanagi, D. Copetti, T. Hernández-Hernández, J. Zhang, N. Ohmido, M. Fujita, A. Toyoda, H. Ikawa, A. Fujiyama, H. Furuumi, T. Miyabayashi, T. Kubo, D. Kudrna, R. Wing, K. Yano, K.I. Nonomura, Y. Sato, N. Kurata, Evolution and diversity of the wild rice Oryza officinalis complex, across continents, genome types, and ploidy levels, Genome Biol. Evol. 12 (2020) 413–428.

[72]

R.M. Gutaker, S.C. Groen, E.S. Bellis, J.Y. Choi, I.S. Pires, R.K. Bocinsky, E.R. Slayton, O. Wilkins, C.C. Castillo, S. Negrão, M.M. Oliveira, D.Q. Fuller, J.A.D. Guedes, J.R. Lasky, M.D. Purugganan, Genomic history and ecology of the geographic spread of rice, Nat. Plants 6 (2020) 492–502.

[73]

Q. Lyu, W. Li, Z. Sun, N. Ouyang, X. Jing, Q. He, J. Wu, J. Zheng, J. Zheng, S. Tang, R. Zhu, Y. Tian, M. Duan, Y. Tan, D. Yu, X. Sheng, X. Sun, G. Jia, H. Gao, Q. Zeng, Y. Li, L. Tang, Q. Xu, B. Zhao, Z. Huang, H. Lu, N. Li, J. Zhao, L. Zhu, D. Li, L. Yuan, D. Yuan, Resequencing of 1143 indica rice accessions reveals important genetic variations and different heterosis patterns, Nat. Commun. 11 (2020) 4778.

[74]

W. Yao, G. Li, H. Zhao, G. Wang, X. Lian, W. Xie, Exploring the rice dispensable genome using a metagenome-like assembly strategy, Genome Biol. 16 (2015) 187.

[75]

Q. Zhao, Q. Feng, H. Lu, Y. Li, A. Wang, Q. Tian, Q. Zhan, Y. Lu, L. Zhang, T. Huang, Y. Wang, D. Fan, Y. Zhao, Z. Wang, C. Zhou, J. Chen, C. Zhu, W. Li, Q. Weng, Q. Xu, Z.X. Wang, X. Wei, B. Han, X. Huang, Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice, Nat. Genet. 50 (2018) 278–284.

[76]

Y. Zhou, D. Chebotarov, D. Kudrna, V. Llaca, S. Lee, S. Rajasekar, N. Mohammed, N. Al-Bader, C. Sobel-Sorenson, P. Parakkal, L.J. Arbelaez, N. Franco, N. Alexandrov, N.R.S. Hamilton, H. Leung, R. Mauleon, M. Lorieux, A. Zuccolo, K. McNally, J. Zhang, R.A. Wing, A platinum standard pan-genome resource that represents the population structure of Asian rice, Sci. Data 7 (2020) 113.

[77]

S. Kikuchi, Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice, Science 301 (2003) 376–379.

[78]

G. Zhang, G. Guo, X. Hu, Y. Zhang, Q. Li, R. Li, R. Zhuang, Z. Lu, Z. He, X. Fang, L. Chen, W. Tian, Y. Tao, K. Kristiansen, X. Zhang, S. Li, H. Yang, J. Wang, J. Wang, Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome, Genome Res. 20 (2010) 646–654.

[79]

T. Lu, G. Lu, D. Fan, C. Zhu, W. Li, Q. Zhao, Q. Feng, Y. Zhao, Y. Guo, W. Li, X. Huang, B. Han, Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq, Genome Res. 20 (2010) 1238–1249.

[80]

S. Feng, S.J. Cokus, X. Zhang, P.Y. Chen, M. Bostick, M.G. Goll, J. Hetzel, J. Jain, S.H. Strauss, M.E. Halpern, C. Ukomadu, K.C. Sadler, S. Pradhan, M. Pellegrini, S.E. Jacobsen, Conservation and divergence of methylation patterning in plants and animals, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 8689–8694.

[81]

A. Zemach, I.E. McDaniel, P. Silva, D. Zilberman, Genome-wide evolutionary analysis of eukaryotic DNA methylation, Science 328 (2010) 916–919.

[82]

H. Stroud, B. Ding, S.A. Simon, S. Feng, M. Bellizzi, M. Pellegrini, G.L. Wang, B.C. Meyers, S.E. Jacobsen, Plants regenerated from tissue culture contain stable epigenome changes in rice, Elife 19 (2013) e00354.

[83]

C. Zhou, C. Wang, H. Liu, Q. Zhou, Q. Liu, Y. Guo, T. Peng, J. Song, J. Zhang, L. Chen, Y. Zhao, Z. Zeng, D.-X. Zhou, Identification and analysis of adenine N 6-methylation sites in the rice genome, Nat. Plants 4 (2018) 554–563.

[84]

H. Huang, B.R. Sabari, B.A. Garcia, C.D. Allis, Y. Zhao, SnapShot: histone modifications, Cell 159 (2014) 458.

[85]

S. Ma, N. Tang, X. Li, Y. Xie, D. Xiang, J. Fu, J. Shen, J. Yang, H. Tu, X. Li, H. Hu, L. Xiong, Reversible histone H2B monoubiquitination fine-tunes abscisic acid signaling and drought response in rice, Mol. Plant 12 (2019) 263–277.

[86]

S. Liu, G. Liu, P. Cheng, C. Xue, Y. Zhou, X. Chen, L. Ye, Z. Qiao, T. Zhang, Z. Gong, Genome-wide profiling of histone lysine butyrylation reveals its role in the positive regulation of gene transcription in rice, Rice 12 (2019).

[87]

W. Zong, J. Yang, J. Fu, L. Xiong, Synergistic regulation of drought-responsive genes by transcription factor OsbZIP23 and histone modification in rice, J. Integr. Plant Biol. 62 (2020) 723–729.

[88]

J. Sun, N. He, L. Niu, Y. Huang, W. Shen, Y. Zhang, L. Li, C. Hou, Global quantitative mapping of enhancers in rice by STARR-seq, Genom. Proteom. Bioinforma. 17 (2019) 140–153.

[89]

L. Zhao, L. Xie, Q. Zhang, W. Ouyang, L. Deng, P. Guan, M. Ma, Y. Li, Y. Zhang, Q. Xiao, J. Zhang, H. Li, S. Wang, J. Man, Z. Cao, Q. Zhang, Q. Zhang, G. Li, X. Li, Integrative analysis of reference epigenomes in 20 rice varieties, Nat. Commun. 11 (2020) 2658.

[90]

Y. Zhao, D.-X. Zhou, Epigenomic modification and epigenetic regulation in rice, J. Genet. Genomics 39 (2012) 307–315.

[91]

X. Deng, X. Song, L. Wei, C. Liu, X. Cao, Epigenetic regulation and epigenomic landscape in rice, Natl. Sci. Rev. 3 (2016) 309–327.

[92]

S. Lanciano, M. Mirouze, DNA methylation in rice and relevance for breeding, Epigenomes 1 (2017) 10.

[93]

H. Zhang, Z. Lang, J.K. Zhu, Dynamics and function of DNA methylation in plants, Nat. Rev. Mol. Cell Biol. 19 (2018) 489–506.

[94]

A. Banerjee, A. Roychoudhury, The gymnastics of epigenomics in rice, Plant Cell Rep. 37 (2018) 25–49.

[95]

Y. Lu, D.-X. Zhou, Y. Zhao, Understanding epigenomics based on the rice model, Theor. Appl. Genet. 133 (2020) 1345–1363.

[96]

J.Y. Tang, C.C. Chu, MicroRNAs in crop improvement: fine-tuners for complex traits, Nat. Plants 3 (2017) 17077.

[97]

Q. Chu, P. Bai, X. Zhu, X. Zhang, L. Mao, Q.H. Zhu, L. Fan, C.Y. Ye, Characteristics of plant circular RNAs, Brief. Bioinform. 21 (2018) 135–143.

[98]

W. Yang, H. Feng, X. Zhang, J. Zhang, J.H. Doonan, W.D. Batchelor, L. Xiong, J. Yan, Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives, Mol. Plant 13 (2020) 187–214.

[99]

S. Teramoto, Y. Uga, A deep learning-based phenotypic analysis of rice root distribution from field images, Plant Phenomics (2020), https://doi.org/10.34133/2020/3194308.

[100]

L. Liu, H. Lu, Y. Li, Z. Cao, High-throughput rice density estimation from transplantation to tillering stages using deep networks, Plant Phenomics (2020), https://doi.org/10.34133/2020/1375957.

[101]

A.O. Conrad, W. Li, D.Y. Lee, G.L. Wang, L. Rodriguez-Saona, P. Bonello, Machine learning-based presymptomatic detection of rice sheath blight using spectral profiles, Plant Phenomics (2020), https://doi.org/10.34133/2020/8954085.

[102]

H. Sakai, S.S. Lee, T. Tanaka, H. Numa, J. Kim, Y. Kawahara, H. Wakimoto, C.C. Yang, M. Iwamoto, T. Abe, Y. Yamada, A. Muto, H. Inokuchi, T. Ikemura, T. Matsumoto, T. Sasaki, T. Itoh, Rice annotation project database (RAP-DB): an integrative and interactive database for rice genomics, Plant Cell Physiol. 54 (2013) e6.

[103]

J.M. Song, Y. Lei, C.C. Shu, Y. Ding, F. Xing, H. Liu, J. Wang, W. Xie, J. Zhang, L.L. Chen, Rice information GateWay: a comprehensive bioinformatics platform for indica rice genomes, Mol. Plant 11 (2018) 505–507.

[104]

H. Peng, K. Wang, Z. Chen, Y. Cao, Q. Gao, Y. Li, X. Li, H. Lu, H. Du, M. Lu, X. Yang, C. Liang, MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice, Nucleic Acids Res. 48 (2020) D1085–D1092.

[105]

J. Sang, D. Zou, Z. Wang, F. Wang, Y. Zhang, L. Xia, Z. Li, L. Ma, M.M. Li, B. Xu, X. Liu, S. Wu, L. Liu, G. Niu, M.M. Li, Y. Luo, S. Hu, L. Hao, Z. Zhang, IC4R-2.0: rice genome reannotation using massive RNA-seq data, Genom. Proteom. Bioinform. 18 (2020) 161–172.

[106]
C. Agret, C. Gottin, A. Dereeper, C. Tranchant-dubreuil, A. Chateau, G. Sarah, A. Mancheron, G. Sempéré, M. Ruiz, G. Droc, U.M.R. Agap, U.M.R. Ipme, I.R.D.U.M.R. Diade, U.M.R. Agap, U.M.R. Agap, South green resources to manage rice big genomics data, in: PAG, 2020. https://plan.core-apps.com/pag_2020/abstract/aee41b47-958f-4594-8538-47be97ffeeeb.
[107]

P. Zhang, Y. Wang, S. Chachar, J. Tian, X. Gu, eRice: a refined epigenomic platform for japonica and indica rice, Plant Biotechnol. J. 18 (2020) 1642–1644.

[108]

C. Sun, Z. Hu, T. Zheng, K. Lu, Y. Zhao, W. Wang, J. Shi, C. Wang, J. Lu, D. Zhang, Z. Li, C. Wei, RPAN: rice pan-genome browser for ~3000 rice genomes, Nucleic Acids Res. 45 (2017) 597–605.

[109]

H. Ohyanagi, T. Ebata, X. Huang, H. Gong, M. Fujita, T. Mochizuki, A. Toyoda, A. Fujiyama, E. Kaminuma, Y. Nakamura, Q. Feng, Z.X. Wang, B. Han, N. Kurata, Oryza genome: genome diversity database of wild Oryza species, Plant Cell Physiol. 57 (2016) e1.

[110]

H. Zhao, W. Yao, Y. Ouyang, W. Yang, G. Wang, X. Lian, Y. Xing, L. Chen, W. Xie, RiceVarMap: a comprehensive database of rice genomic variations, Nucleic Acids Res. 43 (2015) D1018–D1022.

[111]

L. Mansueto, R.R. Fuentes, F.N. Borja, J. Detras, J.M. Abriol-Santos, D. Chebotarov, M. Sanciangco, K. Palis, D. Copetti, A. Poliakov, I. Dubchak, V. Solovyev, R.A. Wing, R.S. Hamilton, R. Mauleon, K.L. McNally, N. Alexandrov, Rice SNP-seek database update: new SNPs, InDels, and queries, Nucleic Acids Res. 45 (2017) D1075–D1081.

[112]

C.C. Wang, H. Yu, J. Huang, W. Wang, M. Faruquee, F. Zhang, X. Zhao, B. Fu, K. Chen, H. Zhang, S. Tai, C. Wei, K.L. McNally, N. Alexandrov, X. Gao, J. Li, Z. Li, J. Xu, T. Zheng, Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0, Plant Biotechnol. J. 18 (2020) 14–16.

[113]

J. Yan, D. Zou, C. Li, Z. Zhang, S. Song, X. Wang, SnpReady for rice (SR4R) database, bioRxiv (2020). https://doi.org/10.1101/2020.01.11.902999.

[114]

J.-I. Yonemaru, K. Ebana, M. Yano, HapRice, an SNP haplotype database and a web tool for rice, Plant Cell Physiol. 55 (2014) 1–12.

[115]

Z. Liu, T. Wang, L. Wang, H. Zhao, E. Yue, Y. Yan, F. Irshad, L. Zhou, M.H. Duan, J.H. Xu, RTRIP: a comprehensive profile of transposon insertion polymorphisms in rice, Plant Biotechnol. J. 18 (2020) 12.

[116]

D. Copetti, J. Zhang, M. El Baidouri, D. Gao, J. Wang, E. Barghini, R.M. Cossu, A. Angelova, C.E. Maldonado L.S. Roffler, H. Ohyanagi, T. Wicker, C. Fan, A. Zuccolo, M. Chen, A. Costa de Oliveira, B. Han, R. Henry, Y. ie Hsing, N. Kurata, W. Wang, S.A. Jackson, O. Panaud, R.A. Wing, RiTE database: a resource database for genus-wide rice genomics and evolutionary biology, BMC Genomics 16 (2015) 538.

[117]

Y. Sato, N. Namiki, H. Takehisa, K. Kamatsuki, H. Minami, H. Ikawa, H. Ohyanagi, K. Sugimoto, J.I. Itoh, B.A. Antonio, Y. Nagamura, RiceFREND: a platform for retrieving coexpressed gene networks in rice, Nucleic Acids Res. 41 (2013) 1214–1221.

[118]

Y. Sato, H. Takehisa, K. Kamatsuki, H. Minami, N. Namiki, H. Ikawa, H. Ohyanagi, K. Sugimoto, B.A. Antonio, Y. Nagamura, RiceXPro version 3.0: expanding the informatics resource for rice transcriptome, Nucleic Acids Res. 41 (2013) 1206–1213.

[119]

L. Xia, D. Zou, J. Sang, X. Xu, H. Yin, M. Li, S. Wu, S. Hu, L. Hao, Z. Zhang, Rice Expression Database (RED): an integrated RNA-Seq-derived gene expression database for rice, J. Genet. Genomics 44 (2017) 235–241.

[120]

J. Zhang, C. Li, C. Wu, L. Xiong, G. Chen, Q. Zhang, S. Wang, RMD: a rice mutant database for functional analysis of the rice genome, Nucleic Acids Res. 34 (2006) 745–748.

[121]

G. Li, R. Jain, M. Chern, N.T. Pham, J.A. Martin, T. Wei, W.S. Schackwitz, A.M. Lipzen, P.Q. Duong, K.C. Jones, L. Jiang, D. Ruan, D. Bauer, Y. Peng, K.W. Barry, J. Schmutz, P.C. Ronald, The sequences of 1504 mutants in the model rice variety kitaake facilitate rapid functional genomic studies, Plant Cell 29 (2017) 1218–1231.

[122]

W.M. Karlowski, H. Schoof, V. Janakiraman, V. Stuempflen, K.F.X. Mayer, MOsDB: an integrated information resource for rice genomics, Nucleic Acids Res. 31 (2003) 190–192.

[123]

P. Garg, P. Jaiswal, Databases and bioinformatics tools for rice research, Curr. Plant Biol. 7-8 (2016) 39–52.

[124]

V. Juanillas, A. Dereeper, N. Beaume, G. Droc, J. Dizon, J.R. Mendoza, J.P. Perdon, L. Mansueto, L. Triplett, J. Lang, G. Zhou, K. Ratharanjan, B. Plale, J. Haga, J.E. Leach, M. Ruiz, M. Thomson, N. Alexandrov, P. Larmande, T. Kretzschmar, R.P. Mauleon, Rice galaxy: an open resource for plant science, GigaScience 8 (2019) giz028.

[125]

W. Yao, G. Li, Y. Yu, Y. Ouyang, funRiceGenes dataset for comprehensive understanding and application of rice functional genes, GigaScience 7 (2018) gix119.

[126]

W. Liu, X. Xie, X. Ma, J. Li, J. Chen, Y.G. Liu, DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations, Mol. Plant 8 (2015) 1431–1433.

[127]

X. Xie, X. Ma, Q. Zhu, D. Zeng, G. Li, Y.G. Liu, CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing, Mol. Plant 10 (2017) 1246–1249.

[128]

X. Xie, W. Liu, G. Dong, Q. Zhu, Y.G. Liu, MMEJ-KO: a web tool for designing paired CRISPR guide RNAs for microhomology-mediated end joining fragment deletion, Sci. China Life Sci. (2020), https://doi.org/10.1007/s11427-020-1797–3.

[129]

Q. Liu, C. Wang, X. Jiao, H. Zhang, L. Song, Y. Li, C. Gao, K. Wang, Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems, Sci. China. Life Sci. 62 (2019) 1–7.

[130]

W.J. Hong, Y.J. Kim, E.J. Kim, A. Kumar Nalini Chandran, S. Moon, Y.S. Gho, M.H. Yoou, S.T. Kim, K.H. Jung, CAFRI-Rice: CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice, Plant J. 104 (2020) 532–545.

[131]

X. Tang, Y. Huang, J. Lei, H. Luo, X. Zhu, The single-cell sequencing: new developments and medical applications, Cell Biosci. 9 (2019) 53.

[132]

Y. Han, X. Chu, H. Yu, Y.-K. Ma, X.-J. Wang, W. Qian, Y. Jiao, Single-cell transcriptome analysis reveals widespread monoallelic gene expression in individual rice mesophyll cells, Sci. Bull. 62 (2017) 1304–1314.

[133]

S. Zhou, W. Jiang, Y. Zhao, D.-X. Zhou, Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes, Nat. Plants 5 (2019) 795–800.

[134]

Y. Wang, Q. Huan, X. Chu, K. Li, W. Qian, Single-cell transcriptome analyses recapitulate the cellular and developmental responses to abiotic stresses in rice, BioRxiv (2020), https://doi.org/10.1101/2020.01.30.926329.

[135]

S.V. Desai, V.N. Balasubramanian, T. Fukatsu, S. Ninomiya, W. Guo, Automatic estimation of heading date of paddy rice using deep learning, Plant Methods 15 (2019) 76.

[136]

S. Basith, B. Manavalan, T.H. Shin, G. Lee, SDM6A: a web-based integrative machine-learning framework for predicting 6mA sites in the rice genome, Mol. Ther.-Nucl. Acids 18 (2019) 131–141.

[137]

F. Lin, J. Fan, S.Y. Rhee, QTG-Finder: a machine-learning based algorithm to prioritize causal genes of quantitative trait loci in Arabidopsis and rice, G3-Genes Genomes Genet. 9 (2019) 3129–3138.

[138]

N.F. Grinberg, O.I. Orhobor, R.D. King, An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat, Mach. Learn. 109 (2020) 251–277.

[139]

K. Kiratiratanapruk, P. Temniranrat, W. Sinthupinyo, P. Prempree, K. Chaitavon, S. Porntheeraphat, A. Prasertsak, Development of paddy rice seed classification process using machine learning techniques for automatic grading machine, J. Sensors (2020), https://doi.org/10.1155/2020/7041310.

The Crop Journal
Pages 609-621
Cite this article:
Jia L, Xie L, Lao S, et al. Rice bioinformatics in the genomic era: Status and perspectives. The Crop Journal, 2021, 9(3): 609-621. https://doi.org/10.1016/j.cj.2021.03.003

378

Views

4

Downloads

10

Crossref

6

Web of Science

11

Scopus

3

CSCD

Altmetrics

Received: 02 December 2020
Revised: 20 February 2021
Accepted: 31 March 2021
Published: 06 April 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return