AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (614.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Understanding the genetic basis of rice heterosis: Advances and prospects

Sinan ZhangaXuehui Huanga( )Bin Hanb( )
Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
Show Author Information

Abstract

Heterosis, which describes the superior vigor and yield of F1 hybrids with respect to their parents, is observed in many rice hybrid crosses. The exploitation of heterosis is a great leap in the history of rice breeding. With advances in genomics and genetics, high-resolution mapping and functional identification of heterosis-associated loci have been performed in rice. Here we summarize advances in understanding the genetic basis of grain yield heterosis in hybrid rice and provide a vision for the genetic study and breeding application of rice heterosis in the future.

References

[1]

L.P. Yuan, Hybrid rice in China, Chin. J. Rice Sci. 1 (1986) 8-18 (in Chinese with English abstract).

[2]

G.J. Ren, L.A. Yan, H.A. Xie, Retrospective and perspective on indica three-line hybrid rice breeding research in China, Chin. Sci. Bull. 61 (2016) 3748-3760 (in Chinese).

[3]

Z.Y. Yang, Retrospects and prospects on the development of japonica hybrid rice in the north of China, Acta. Agron. Sin. 24 (1998) 840-846 (in Chinese with English abstract).

[4]

Z.G. Zhang, S.C. Yuan, C.Z. Xu, The influence of photoperiod on the fertility changes of Hubei photosensitive genic male-sterile rice (HPGMR), Chin. J. Rice Sci. 1 (1987) 137-143.

[5]

L. Chen, G. Zhou, X. Yu, Effects of temperature and photoperiod on fertility and physiological activities of rice annong S-1 and Hengnong S-1, Acta. Bot. Sin. 36 (1994) 119-123.

[6]

H. Zhou, M. Zhou, Y. Yang, J. Li, L. Zhu, D. Jiang, J. Dong, Q. Liu, L. Gu, L. Zhou, M. Feng, P. Qin, X. Hu, C.X. Zhuang, RNase Z(S1) processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice, Nat. Commun. 5 (2014) 4884.

[7]

J. Ding, Q. Lu, Y. Ouyang, H. Mao, P. Zhang, J. Yao, C. Xu, X. Li, J. Xiao, Q. Zhang, A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 2654-2659.

[8]

H. Zhou, Q. Liu, J. Li, D. Jiang, L. Zhou, P. Wu, S. Lu, F. Li, L. Zhu, Z. Liu, L. Chen, Y.G. Liu, C. Zhuang, Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA, Cell Res. 22 (2012) 649-660.

[9]

J. Wu, Q.Y. Deng, S.Y. Yuan, S. Qi, Progress of super hybrid rice research in China, Chin. Sci. Bull. 35 (2016) 3787-3796.

[10]

A. Tao, H. Zeng, Y. Zhang, G. Xie, F. Qin, Y. Zheng, D. Zhang, Genetic analysis of the low critical sterility temperature point in photoperiod-thermo sensitive genic male sterile rice, Acta Genet. Sin. 30 (2003) 40-48 (in Chinese).

[11]

S. Song, T. Wang, Y. Li, J. Hu, R. Kan, M. Qiu, Y. Deng, P. Liu, L. Zhang, H. Dong, C. Li, D. Yu, X. Li, D. Yuan, L. Yuan, L. Li, A novel strategy for creating a new system of third-generation hybrid rice technology using a cytoplasmic sterility gene and a genic male-sterile gene, Plant Biotechnol. J. 2 (2020) 251-260.

[12]

X. Yang, D. Wu, J. Shi, Y. He, F. Pinot, B. Grausem, C. Yin, Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine, J. Integr. Plant Biol. 56 (2014) 979-994.

[13]

X. Peng, K. Wang, C. Hu, Y. Zhu, T. Wang, J. Yang, J. Tong, The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice, BMC Plant Biol. 10 (2010) 125.

[14]

B.J. Bevis, B.S. Glick, Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed), Nat. Biotechnol. 20 (2002) 83-87.

[15]

X. An, B. Ma, M. Duan, Z. Dong, R. Liu, D. Yuan, Q. Hou, S. Wu, D. Zhang, D. Liu, D. Yu, Y. Zhang, K. Xie, T. Zhu, Z. Li, S. Zhang, Y. Tian, G. Liu, J. Li, L. Yuan, X. Wan, Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 23499-23509.

[16]

X. Wan, S. Wu, X. Li, Breeding with dominant genic male-sterility genes to boost crop grain yield in post-heterosis utilization era, Mol. Plant (2021), https://doi.org/10.1016/j.molp.2021.02.004.

[17]

I. Khanday, D. Skinner, B. Yang, R. Mercier, V. Sundaresan, A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds, Nature 565 (2019) 91-95.

[18]

C. Wang, Q. Liu, Y. Shen, Y. Hua, J. Wang, J. Lin, M. Wu, T. Sun, Z. Cheng, R. Mercier, K.J. Wang, Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes, Nat. Biotechnol. 37 (2019) 283-286.

[19]

X.H. Huang, S.H. Yang, J.Y. Gong, Y. Zhao, Q. Feng, H. Gong, W.J. Li, Q. Zhan, B. Cheng, J. Xia, B. Han, Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis, Nat. Commun. 6 (2015) 6258.

[20]

X.H. Huang, S.H. Yang, J.Y. Gong, Q. Zhao, Q. Feng, Q. Zhao, Y. Zhao, W. Li, B. Cheng, J. Xia, N. Chen, T. Huang, L. Zhang, D. Fan, J. Chen, C. Zhou, Y. Lu, Q.J. Weng, B. Han, Genomic architecture of heterosis for yield traits in rice, Nature 537–7622 (2016) 629-633.

[21]

A. Thiemann, J. Fu, F. Seifert, R.T. Grant-Downton, T.A. Schrag, H. Pospisil, M. Frisch, A.E. Melchinger, S. Scholten, Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci, BMC Plant Biol. 14 (2014) 88.

[22]

L. Shao, F. Xing, C. Xu, Q. Zhang, J. Che, X. Wang, J. Song, X. Li, J. Xiao, L.L. Chen, Y. Ouyang, Q.F. Zhang, Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 5653-5658.

[23]

Z. Wang, Z. Xue, T. Wang, Differential analysis of proteomes and metabolomes reveals additively balanced networking for metabolism in maize heterosis, J. Proteome Res. 13 (2014) 3987-4001.

[24]

Z. Li, A. Zhu, Q. Song, H.Y. Chen, F.G. Harmon, Z.J. Chen, Temporal regulation of the metabolome and proteome in photosynthetic and photorespiratory pathways contributes to maize heterosis, Plant Cell 32 (2020) 3706-3722.

[25]

D. Li, Z. Huang, S. Song, Y. Xin, D. Mao, Q. Lyu, M. Zhou, D. Tian, M. Tang, Q. Wu, X. Liu, T. Chen, X. Song, X. Fu, B. Zhao, C. Liang, A. Li, G. Liu, S. Li, S. Hu, X. Cao, J. Yu, L.P. Yuan, C. Chen, L.H. Zhu, Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) E6026-E6035.

[26]

S. Takeda, M. Matsuoka, Genetic approaches to crop improvement: responding to environmental and population changes, Nat. Rev. Genet. 9 (2008) 444-457.

[27]

Z.B. Lippman, D. Zamir, Heterosis: revisiting the magic, Trends Genet. 23 (2007) 60-66.

[28]

S.A. Goff, Q.F. Zhang, Heterosis in elite hybrid rice: speculation on the genetic and biochemical mechanisms, Curr. Opin. Plant Biol. 16 (2013) 221-227.

[29]

J. Liu, M.J. Li, Q. Zhang, X. Wei, H.X. Huang, Exploring the molecular basis of heterosis for plant breeding, J. Integr. Plant Biol. 62 (2020) 287-298.

[30]

J.P. Hua, Y.Z. Xing, W. Wu, C.G. Xu, X. Sun, S.B. Yu, Q.F. Zhang, Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 2574-2579.

[31]

Z.K. Li, S.R. Pinson, W.D. Park, A.H. Paterson, J.W. Stansel, Epistasis for three grain yield components in rice (Oryza sativa L.), Genetics. 145 (1997) 453-465.

[32]

S.B. Yu, J.X. Li, C.G. Xu, Y.F. Tan, Y.J. Gao, X.H. Li, Q.F. Zhang, M.A. Saghai Maroof, Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid, Proc. Natl. Acad. Sci. U. S. A. 94 (1997) 9226-9231.

[33]

J.P. Hua, Y.Z. Xing, C.G. Xu, S.L. Sun, S.B. Yu, Q.F. Zhang, Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance, Genetics 162 (2002) 1885-1895.

[34]

C. Chen, H. Chen, Y.S. Lin, J.B. Shen, J.X. Shan, P. Qi, M. Shi, M.Z. Zhu, X.H. Huang, Q. Feng, B. Han, L. Jiang, J.P. Gao, H.X. Lin, A two-locus interaction causes interspecific hybrid weakness in rice, Nat. Commun. 5 (2014) 3357.

[35]

I.J. Mackay, J. Cockram, P. Howell, W. Powell, Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding, Plant Biotechnol. J. 19 (2021) 26-34.

[36]

X. Wei, J. Qiu, K. Yong, J. Fan, Q. Zhang, H. Hua, J. Liu, Q. Wang, K.M. Olsen, B. Han, X. Huang, A quantitative genomics map of rice provides genetic insights and guides breeding, Nat Genet. 53 (2021) 243-253.

[37]

S. Kojima, Y. Takahashi, Y. Kobayashi, L. Monna, T. Sasaki, T. Araki, M. Yano, Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions, Plant Cell Physiol. 43 (2002) 1096-1105.

[38]

U. Krieger, Z.B. Lippman, D. Zamir, The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato, Nat. Genet. 42 (2010) 459-463.

[39]

K. Jiang, K.L. Liberatore, S.J. Park, J.P. Alvarez, Z.B. Lippman, Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture, PLoS Genet. 9 (2013) e1004043.

[40]

B. Yu, Z. Lin, H. Li, X. Li, J. Li, Y. Wang, X. Zhang, Z. Zhu, W. Zhai, X. Wang, D. Xie, C.Q. Sun, TAC1, a major quantitative trait locus controlling tiller angle in rice, Plant J. 52 (2007) 891-898.

[41]

W.H. Yan, P. Wang, H.X. Chen, H.J. Zhou, Q.P. Li, C.R. Wang, Z.H. Ding, Y.S. Zhang, S.B. Yu, Y.Z. Xing, Q.F. Zhang, A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice, Mol. Plant 4 (2011) 319-330.

[42]

S.L. Kim, S. Lee, H.J. Kim, H.G. Nam, G. An, OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a, Plant Physiol. 145 (2007) 1484-1494.

[43]

M. Komatsu, M. Maekawa, K. Shimamoto, J. Kyozuka, The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development, Dev. Biol. 231 (2001) 364-373.

[44]

C. Wang, S. Tang, Q. Zhan, Q. Hou, Y. Zhao, Q. Zhao, Q. Feng, C. Zhou, D. Lyu, L. Cui, Y. Li, J. Miao, C. Zhu, Y. Lu, Y. Wang, Z. Wang, J. Zhu, Y. Shangguan, J. Gong, S. Yang, W. Wang, J. Zhang, H. Xie, X. Huang, B. Han, Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy, Nat. Commun. 10 (2019) 2982.

[45]

H. Zhou, M. Zhou, Y. Yang, J. Li, L. Zhu, D. Jiang, J. Dong, Q. Liu, L. Gu, L. Zhou, M. Feng, P. Qin, X. Hu, C.X. Zhuang, RNase Z(S1) processes mRNAs and controls thermosensitive genic male sterility in rice, Nat. Commun. 11 (2014) 4884.

[46]

H.Y. Sun, Q. Qian, K. Wu, J. Luo, S. Wang, C. Zhang, Y. Ma, Q. Liu, X. Huang, Q. Yuan, R. Han, M. Zhao, X.D. Fu, Heterotrimeric G proteins regulate nitrogen-use efficiency in rice, Nat. Genet. 46 (2014) 652-656.

[47]

M. Yano, Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna, T. Fuse, T. Baba, K. Yamamoto, Y. Umehara, Y. Nagamura, T. Sasaki, Hd1, a major photoperiod sensitivity quantitative trait locus in rice is closely related to the Arabidopsis flowering time gene CONSTANS, Plant Cell 12 (2000) 2473-2484.

[48]

Y. Jiao, Y. Wang, D. Xue, J. Wang, M. Yan, G. Liu, G. Dong, D. Zeng, Z. Lu, X. Zhu, Q. Qian, J. Li, Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice, Nat Genet. 42 (2010) 541-544.

[49]

K. Miura, M. Ikeda, A. Matsubara, X.J. Song, M. Ito, K. Asano, M. Matsuoka, H. Kitano, M. Ashikari, OsSPL14 promotes panicle branching and higher grain productivity in rice, Nat Genet. 42 (2010) 545-549.

[50]

D.L. Remington, M.C. Ungerer, M.D. Purugganan, Map-based cloning of quantitative trait loci: progress and prospects, Genet. Res. 78 (2001) 213-218.

[51]

K. Chen, Y. Wang, R. Zhang, H. Zhang, C. Gao, CRISPR/Cas genome editing and precision plant breeding in agriculture, Annu. Rev. Plant Biol. 70 (2019) 667-697.

[52]

K. Hua, J. Zhang, J.R. Botella, C. Ma, F. Kong, B. Liu, J.K. Zhu, Perspectives on the application of genome-editing technologies in crop breeding, Mol. Plant 12 (2019) 1047-1059.

[53]

L. Shen, C. Wang, Y. Fu, J. Wang, Q. Liu, X. Zhang, C. Yan, Q. Qian, K. Wang, QTL editing confers opposing yield performance in different rice varieties, J. Integr. Plant Biol. 60 (2018) 89-93.

[54]

J. Kumlehn, J. Pietralla, G. Hensel, M. Pacher, H. Puchta, The CRISPR/Cas revolution continues: from efficient gene editing for crop breeding to plant synthetic biology, J. Integr. Plant Biol. 60 (2018) 1127-1153.

[55]

B. Mok, M.H. de Moraes, J. Zeng, D.E. Bosch, A.V. Kotrys, A. Raguram, F. Hsu, M.C. Radey, S.B. Peterson, V.K. Mootha, J.D. Mougous, D.R. Liu, A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing, Nature 583–7817 (2020) 631-637.

[56]

Y. Lu, Y. Tian, R. Shen, Q. Yao, M. Wang, M. Chen, J. Dong, T. Zhang, F. Li, M. Lei, J.K. Zhu, Targeted, efficient sequence insertion and replacement in rice, Nat. Biotechnol. 38 (2020) 1402-1407.

[57]

H. Yu, T. Lin, X. Meng, H. Du, J. Zhang, G. Liu, M. Chen, Y. Jing, L. Kou, X. Li, Q. Gao, Y. Liang, X. Liu, Z. Fan, Y. Liang, Z. Cheng, M. Chen, Z. Tian, Y. Wang, C. Chu, J. Zuo, J. Wan, Q. Qian, B. Han, A. Zuccolo, R.A. Wing, C. Gao, C. Liang, J. Li, A route to de novo domestication of wild allotetraploid rice, Cell 184 (2021) 1156-1170.

[58]

F. Cheng, J. Wu, X. Cai, J. Liang, M. Freeling, X. Wang, Gene retention, fractionation and subgenome differences in polyploid plants, Nat. Plants 4 (2018) 258-268.

[59]

M. Sattler, C. Carvalho, W. Clarindo, The polyploidy and its key role in plant breeding, Planta 243 (2016) 281-296.

[60]

Y. Rao, Y. Li, Q. Qian, Recent progress on molecular breeding of rice in China, Plant Cell Rep. 33 (2014) 551-564.

[61]

K.L. Nguyen, A. Grondin, B. Courtois, P. Gantet, Next-generation sequencing accelerates crop gene discovery, Trends Plant Sci. 3 (2019) 263-274.

The Crop Journal
Pages 688-692
Cite this article:
Zhang S, Huang X, Han B. Understanding the genetic basis of rice heterosis: Advances and prospects. The Crop Journal, 2021, 9(3): 688-692. https://doi.org/10.1016/j.cj.2021.03.011

317

Views

7

Downloads

22

Crossref

21

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 01 December 2020
Revised: 09 March 2021
Accepted: 29 March 2021
Published: 21 April 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return