PDF (2.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Short Communication | Open Access

GmNMHC5 may promote nodulation via interaction with GmGAI in soybean

Wenting WangaZhili WangaWensheng HoubLi ChenbBingjun JiangbWenya MabLijuan BaiaWenwen SongbCailong XubTianfu Hanb()Yongjun Fenga()Cunxiang Wub()
School of Life Science, Beijing Institute of Technology, Beijing 100081, China
MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Show Author Information

Abstract

Soybean (Glycine max [L.] Merr.) is a food and oil crop whose growth and yield are influenced by root and nodule development. In the present study, GmNMHC5 was found to promote the formation of nodules in overexpressing mutants. In contrast, the number of nodules in Gmnmhc5 edited with CRISPR/Cas9 decreased sharply. In 35S:GmNMHC5 mutants, expression levels of genes involved in nodulation were significantly up-regulated. Both in vitro and in vivo biochemical analyses showed that GmNMHC5 directly interacted with GmGAI (a DELLA protein), and the content of gibberellin 3 (GA3) in overexpressing mutants was lower than that in the wild type. These results revealed that GmNMHC5 participates in the classical GA signaling pathway, and may regulate the content of GA3 to match the optimal concentration required for nodule formation, thereby promoting nodulation by directly interacting with GmGAI. A model illustrating the mechanism by which GmNMHC5 promotes soybean nodulation is presented.

References

[1]

Y. Chi, F. Huang, H. Liu, S. Yang, D. Yu, An APETALA1-like gene of soybean regulates flowering time and specifies floral organs, J. Plant Physiol. 168 (2011) 2251-2259.

[2]

L. Pnueli, M. Abu-Abeid, D. Zamir, W. Nacken, Z. Schwarz-Sommer, E. Lifschitz, The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis, Plant J. 1 (1991) 255-266.

[3]

S.D. Rounsley, G.S. Ditta, M.F. Yanofsky, Diverse roles for MADS box genes in Arabidopsis development, Plant Cell 7 (1995) 1259-1269.

[4]

N. Kotoda, M. Wada, S. Kusaba, Y. Kano-Murakami, T. Masuda, J. Soejima, Overexpression of MdMADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis, Plant Sci. 162 (2002) 679-687.

[5]

J. Heard, M. Caspi, K. Dunn, Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novel subfamily, Mol. Plant-Microbe Interact. 10 (1997) 665-676.

[6]

W. Ma, W. Liu, W. Hou, S. Sun, B. Jiang, T. Han, Y. Feng, C. Wu, GmNMH7, a MADS-box transcription factor, inhibits root development and nodulation of soybean (Glycine max [L.] Merr.), J. Integr. Agric. 18 (2019) 553-562.

[7]

W. Liu, X. Han, G. Zhan, Z. Zhao, Y. Feng, C. Wu, A novel sucrose-regulatory MADS-box transcription factor GmNMHC5 promotes root development and nodulation in soybean (Glycine max [L.] Merr.), Int. J. Mol. Sci. 16 (2015) 20657-20673.

[8]

W. Wang, Z. Wang, W. Hou, L. Chen, B. Jiang, W. Liu, Y. Feng, C. Wu, GmNMHC5, a neoteric positive transcription factor of flowering and maturity in soybean, Plants 9 (2020) 792.

[9]

G.E.D. Oldroyd, J.D. Murray, P.S. Poole, J.A. Downie, The rules of engagement in the legume-rhizobial symbiosis, Annu. Rev. Genet. 45 (2011) 119-144.

[10]

P. Lerouge, P. Roche, C. Faucher, F. Maillet, G. Truchet, J.C. Promé, J. Dénarié, Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal, Nature 344 (1990) 781-784.

[11]

M. Schultze, A. Kondorosi, Regulation of symbiotic root nodule development, Annu. Rev. Genet. 32 (1998) 33-57.

[12]

J. Dénarié, F. Debellé, J.C. Promé, Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis, Annu. Rev. Biochem. 65 (1996) 503-535.

[13]

G.E.D. Oldroyd, J.A. Downie, Coordinating nodule morphogenesis with rhizobial infection in legumes, Annu. Rev. Plant Biol. 59 (2008) 519-546.

[14]

C. Charon, C. Sousa, M. Crespi, A. Kondorosi, Alteration of ENOD40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti, Plant Cell 11 (1999) 1953-1965.

[15]

H. Kumagai, E. Kinoshita, R.W. Ridge, H. Kouchi, RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus, Plant Cell Physiol. 47 (2006) 1102-1111.

[16]

A. Broghammer, L. Krusell, M. Blaise, J. Sauer, J.T. Sullivan, N. Maolanon, M. Vinther, A. Lorentzen, E.B. Madsen, K.J. Jensen, P. Roepstorff, S. Thirup, C.W. Ronson, M.B. Thygesen, J. Stougaard, Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 13859-13864.

[17]

A. Indrasumunar, I. Searle, M.H. Lin, A. Kereszt, A. Men, B.J. Carroll, P.M. Gresshoff, Nodulation factor receptor kinase 1α controls nodule organ number in soybean (Glycine max [L.] Merr.), Plant J. 65 (2011) 39-50.

[18]

A. Indrasumunar, A. Kereszt, I. Searle, M. Miyagi, D. Li, C.D.T. Nguyen, A. Men, B.J. Carroll, P.M. Gresshoff, Inactivation of duplicated nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max [L.] Merr.), Plant Cell Physiol. 51 (2010) 201-214.

[19]

B.J. Ferguson, U. Mathesius, Phytohormone regulation of legume-Rhizobia interactions, J. Chem. Ecol. 40 (2014) 770-790.

[20]

J.D. Murray, B.J. Karas, S. Sato, S. Tabata, L. Amyot, K. Szczyglowski, A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis, Science 315 (2007) 101-104.

[21]

C. Fonouni-Farde, S. Tan, M. Baudin, M. Brault, J. Wen, K.S. Mysore, A. Niebel, F. Frugier, A. Diet, DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection, Nat. Commun. 7 (2016) 12636.

[22]

Y. Jin, H. Liu, D. Luo, N. Yu, W. Dong, C. Wang, X. Zhang, H. Dai, J. Yang, E. Wang, DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways, Nat. Commun. 7 (2016) 12433.

[23]

C. Fonouni-Farde, A. Kisiala, M. Brault, R.J.N. Emery, A. Diet, F. Frugier, DELLA1-mediated gibberellin signaling regulates cytokinin-dependent symbiotic nodulation, Plant Physiol. 175 (2017) 1795-1806.

[24]

T. Maekawa, M. Maekawa-Yoshikawa, N. Takeda, H. Imaizumi-Anraku, Y. Murooka, M. Hayashi, Gibberellin controls the nodulation signaling pathway in Lotus japonicus, Plant J. 58 (2009) 183-194.

[25]

Y. Tatsukami, M. Ueda, M. Ueda, Rhizobial gibberellin negatively regulates host nodule number, Sci. Rep. 6 (2016) 27998.

[26]

E.L. McAdam, J.B. Reid, E. Foo, Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation, J. Exp. Bot. 69 (2018) 2117-2130.

[27]

B.J. Ferguson, E. Foo, J.J. Ross, J.B. Reid, Relationship between gibberellin, ethylene and nodulation in Pisum sativum, New Phytol. 189 (2011) 829-842.

[28]

B.J. Ferguson, J.J. Ross, J.B. Reid, Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea, Plant Physiol. 138 (2005) 2396-2405.

[29]

J. Peng, P. Carol, D.E. Richards, K.E. King, R.J. Cowling, G.P. Murphy, N.P. Harberd, The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses, Genes Dev. 11 (1997) 3194-3205.

[30]

M. Ueguchi-Tanaka, M. Ashikari, M. Nakajima, H. Itoh, E. Katoh, M. Kobayashi, T.Y. Chow, Y.I.C. Hsing, H. Kitano, I. Yamaguchi, M. Matsuoka, GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin, Nature 437 (2005) 693-698.

[31]

X. Fu, D.E. Richards, T. Ait-ali, L.W. Hynes, H. Ougham, J. Peng, N.P. Harberd, Gibberellin-mediated proteasome-dependent degradation of the Barley DELLA protein SLN1 repressor, Plant Cell 14 (2002) 3191-3200.

[32]

K. Murase, Y. Hirano, T.P. Sun, T. Hakoshima, Gibberellin-induced DELLA recognition by the gibberellin receptor GID1, Nature 456 (2008) 459-463.

[33]

P. Hedden, A.L. Phillips, Gibberellin metabolism: new insights revealed by the genes, Trends Plant Sci. 5 (2000) 523-530.

[34]

T.P. Sun, Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development, Plant Physiol. 154 (2010) 567-570.

[35]

P.M. Williams, M. Sicardi de Mallorca, Effect of gibberellins and the growth retardant CCC on the nodulation of soya, Plant Soil 77 (1984) 53-60.

[36]

F. Zhang, B. Pan, D.L. Smith, Application of gibberellic acid to the surface of soybean seed (Glycine max (L.) Merr.) and symbiotic nodulation, plant development, final grain and protein yield under short season conditions, Plant Soil 188 (1997) 329-335.

[37]

J.M. Davière, P. Achard, Gibberellin signaling in plants, Development 140 (2013) 1147-1151.

[38]

C. Fonouni-Farde, A. Diet, F. Frugier, Root development and endosymbioses: DELLAs lead the orchestra, Trends Plant Sci. 21 (2016) 898-900.

The Crop Journal
Pages 273-279
Cite this article:
Wang W, Wang Z, Hou W, et al. GmNMHC5 may promote nodulation via interaction with GmGAI in soybean. The Crop Journal, 2022, 10(1): 273-279. https://doi.org/10.1016/j.cj.2021.03.019
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return