AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A rice XANTHINE DEHYDROGENASE gene regulates leaf senescence and response to abiotic stresses

Jiangmin Xua,1Chenyang Pana,1Han LinaHanfei YeaSheng WangaTao LuaQianyu ChenaKairu YangaMei LuaQian QianbDeyong Renb( )Yuchun Raoa( )
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Xanthine dehydrogenase, a member of the molybdenum enzyme family, participates in purine metabolism and catalyzes the generation of ureides from xanthine and hypoxanthine. However, the mechanisms by which xanthine dehydrogenase affects rice growth and development are poorly understood. In the present study, we identified a mutant with early leaf senescence and reduced tillering that we named early senescence and less-tillering 1 (esl1). Map-based cloning revealed that ESL1 encodes a xanthine dehydrogenase, and it was expressed in all tissues. Chlorophyll content was reduced and chloroplast maldevelopment was severe in the esl1 mutant. Mutation of ESL1 led to decreases in allantoin, allantoate, and ABA contents. Further analysis revealed that the accumulation of reactive oxygen species in esl1 resulted in decreased photosynthesis and impaired chloroplast development, along with increased sensitivity to abscisic acid and abiotic stresses. Ttranscriptome analysis showed that the ESL1 mutation altered the expression of genes involved in the photosynthesis process and reactive oxygen species metabolism. Our results suggest that ESL1 is involved in purine metabolism and the induction of leaf senescence. These findings reveal novel molecular mechanisms of ESL1 gene-mediated plant growth and leaf senescence.

References

[1]

H.R. Woo, C. Masclaux-Daubresse, P.O. Lim, Plant senescence: how plants know when and how to die, J. Exp. Bot. 69 (2018) 715–718.

[2]

P.O. Lim, H.J. Kim, H. Gil Nam, Leaf senescence, Annu. Rev. Plant. Biol. 58 (2007) 115–136.

[3]

F.K. Choudhury, R.M. Rivero, E. Blumwald, R. Mittler, Reactive oxygen species, abiotic stress and stress combination, Plant J. 90 (2017) 856–867.

[4]

X. Li, J.H. Li, W. Wang, N.Z. Chen, T.S. Ma, Y.N. Xi, X.L. Zhang, H.F. Lin, Y. Bai, S.J. Huang, Y.L. Chen, ARP2/3 complex–mediated actin dynamics is required for hydrogen peroxide–induced stomatal closure in Arabidopsis, Plant Cell Environ. 37 (2014) 1548–1560.

[5]

P.L. Gregersen, A. Culetic, L. Boschian, K. Krupinska, Plant senescence and crop productivity, Plant Mol. Biol. 82 (2013) 603–622.

[6]

R. Morita, Y. Sato, Y. Masuda, M. Nishimura, M. Kusaba, Defect in non–yellow coloring 3, an α/β hydrolase–fold family protein, causes a stay–green phenotype during leaf senescence in rice, Plant J. 59 (2009) 940–952.

[7]

H. Jiang, Y. Chen, M. Li, X. Xu, G. Wu, Overexpression of SGR results in oxidative stress and lesion–mimic cell death in rice seedlings, J. Integr. Plant Biol. 53 (2011) 375–387.

[8]

B.B. Jiao, J.J. Wang, X.D. Zhu, L.J. Zeng, Q. Li, Z.H. He, A novel protein RLS1 with NB–ARM domains is involved in chloroplast degradation during leaf senescence in rice, Mol. Plant 5 (2012) 205–217.

[9]

Y. Yang, J. Xu, L. Huang, Y. Leng, L. Dai, Y. Rao, L. Chen, Y. Wang, Z. Tu, J. Hu, D. Ren, G. Zhang, L.i. Zhu, L. Guo, Q. Qian, D. Zeng, PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice, J. Exp. Bot. 67 (2016) 1297–1310.

[10]

Y. Cui, Y. Peng, Q. Zhang, S. Xia, B. Ruan, Q. Xu, X. Yu, T. Zhou, H. Liu, D. Zeng, G. Zhang, Z. Gao, J. Hu, L. Zhu, L. Shen, L. Guo, Q. Qian, D. Ren, Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice, Plant J. 105 (2021) 942–956.

[11]

Y. Rao, Y. Yang, J. Xu, X. Li, Y. Leng, L. Dai, L. Huang, G. Shao, D. Ren, J. Hu, L. Guo, J. Pan, D. Zeng, EARLY SENESCENCE1 encodes a SCAR–LIKE PROTEIN2 that affects water loss in rice, Plant Physiol. 169 (2015) 1225–1239.

[12]

L. Wu, D. Ren, S. Hu, G. Li, G. Dong, L. Jiang, X. Hu, W. Ye, Y. Cui, L. Zhu, J. Hu, G. Zhang, Z. Gao, D. Zeng, Q. Qian, L. Guo, Down–regulation of a nicotinate phosphoribosyltransferase gene, OsNaPRT1, leads to withered leaf tips, Plant Physiol. 171 (2016) 1085–1098.

[13]

Y. Leng, Y. Yang, D. Ren, L. Huang, L. Dai, Y. Wang, L. Chen, Z. Tu, Y. Gao, X. Li, L. Zhu, J. Hu, G. Zhang, Z. Gao, L. Guo, Z. Kong, Y. Lin, Q. Qian, D. Zeng, A rice PECTATE LYASELIKE gene is required for plant growth and leaf senescence, Plant Physiol. 174 (2017) 1151–1166.

[14]

S. Ke, S. Liu, X. Luan, X.M. Xie, T.F. Hsieh, X.Q. Zhang, Mutation in a putative glycosyltransferase–like gene causes programmed cell death and early leaf senescence in rice, Rice 12 (2019) 7.

[15]

Z. Kong, M. Li, W. Yang, W. Xu, Y. Xue, A novel nuclear–localized CCCH–type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice, Plant Physiol. 141 (2006) 1376–1388.

[16]

C. Liang, Y. Wang, Y. Zhu, J. Tang, B. Hu, L. Liu, S. Ou, H. Wu, X. Sun, J. Chu, C. Chu, OsNAP connects abscisic acid and leaf senescence by fine–tuning abscisic acid biosynthesis and directly targeting senescence–associated genes in rice, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 10013–10018.

[17]

C. Mao, S. Lu, B. Lv, B. Zhang, J. Shen, J. He, L. Luo, D. Xi, X. Chen, F. Ming, A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis, Plant Physiol. 174 (2017) 1747–1763.

[18]

Y. Zhao, Z. Chan, J. Gao, L. Xing, M. Cao, C. Yu, Y. Hu, J. You, H. Shi, Yi. Zhu, Y. Gong, Z. Mu, H. Wang, X. Deng, P. Wang, A.B. Ray, J.K. Zhu, ABA receptor PYL9 promotes drought resistance and leaf senescence, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 1949–1954..

[19]

Y. Hong, Y. Zhang, S. Sinumporn, N. Yu, X. Zhan, X. Shen, D. Chen, P. Yu, W. Wu, Q. Liu, Z. Cao, C. Zhao, S. Cheng, L. Cao, Premature leaf senescence 3, encoding a methyltransferase, is required for melatonin biosynthesis in rice, Plant J. 95 (2018) 877–891.

[20]

S.R. Cutler, P.L. Rodriguez, R.R. Finkelstein, S.R. Abrams, Abscisic acid: emergence of a core signaling network, Annu. Rev. Plant Biol. 61 (2010) 651–679.

[21]

E. Breeze, E. Harrison, S. McHattie, L. Hughes, R. Hickman, C. Hill, S. Kiddle, Y.S. Kim, C.A. Penfold, D. Jenkins, C. Zhang, K. Morris, C. Jenner, S. Jackson, B. Thomas, A. Tabrett, R. Legaie, J.D. Moore, D.L. Wild, S. Ott, D. Rand, J. Beynon, K. Denby, A. Mead, V. Buchanan-Wollaston, High–resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation, Plant Cell 23 (2011) 873–894.

[22]

M.C. Cheng, E.J. Hsieh, J.H. Chen, H.Y. Chen, T.P. Lin, Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response, Plant Physiol. 158 (2012) 363–375.

[23]

B. Shi, L. Ni, A. Zhang, J. Cao, H. Zhang, T. Qin, M. Tan, J. Zhang, M. Jiang, OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice, Mol. Plant 5 (2012) 1359–1374.

[24]

W. Piao, S.H. Kim, B.D. Lee, G. An, Y. Sakuraba, N.C. Paek, Rice transcription factor OsMYB102 delays leaf senescence by down–regulating abscisic acid accumulation and signaling, J. Exp. Bot. 70 (2019) 2699–2715.

[25]

A.K. Werner, C.P. Witte, The biochemistry of nitrogen mobilization: purine ring catabolism, Trends Plant Sci. 16 (2011) 381–387.

[26]

R.R. Mendel, R. Hansch, Molybdoenzymes and molybdenum cofactor in plants, J. Exp. Bot. 53 (2002) 1689–1698.

[27]

R. Zrenner, M. Stitt, U. Sonnewald, R. Boldt, Pyrimidine and purine biosynthesis and degradation in plants, Annu. Rev. Plant Biol. 57 (2006) 805–836.

[28]

G.M. Pastori, L.A. del Rio, Natural senescence of pea leaves: an activated oxygen–mediated function for peroxisomes, Plant Physiol. 113 (1997) 411–418.

[29]

N. Taylor, K. Cowan, Plant hormone homeostasis and the control of avocado fruit size, Plant Growth Regul. 35 (2001) 247–255.

[30]

A. Nakagawa, S. Sakamoto, M. Takahashi, H. Morikawa, A. Sakamoto, The RNAi–mediated silencing of xanthine dehydrogenase impairs growth and fertility and accelerates leaf senescence in transgenic Arabidopsis plants, Plant Cell Physiol. 48 (2007) 1484–1495.

[31]

J. Tan, Z. Tan, F. Wu, P. Sheng, Y. Heng, X. Wang, Y. Ren, J. Wang, X. Guo, X. Zhang, Z. Cheng, L. Jiang, X. Liu, H. Wang, J. Wan, A novel chloroplast–localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice, Mol. Plant 7 (2014) 1329–1349.

[32]

Y. Wang, C. Wang, M. Zheng, J. Lyu, Y. Xu, X. Li, M. Niu, W. Long, D.i. Wang, HaiYang Wang, W. Terzaghi, Y. Wang, J. Wan, WHITE PANICLE1, a Val–tRNA synthetase regulating chloroplast ribosome biogenesis in rice, is essential for early chloroplast development, Plant Physiol. 170 (2016) 2110–2123.

[33]

H.K. Lichtenthaler, Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods Enzymol. 148 (1987) 350–382.

[34]

P. Guo, Z. Li, P. Huang, B. Li, S. Fang, J. Chu, H. Guo, A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence, Plant Cell 29 (2017) 2854–2870.

[35]

S.A. Zafar, S.B. Patil, M. Uzair, J. Fang, J. Zhao, T. Guo, S. Yuan, M. Uzair, Q. Luo, J. Shi, L. Schreiber, X. Li, DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β–synthase domain containing protein required for anther cuticle and panicle development in rice, New Phytol. 225 (2020) 356–375.

[36]

F. Moradi, A.M. Ismail, Responses of photosynthesis, chlorophyll fluorescence and ROS–scavenging systems to salt stress during seedling and reproductive stages in rice, Ann. Bot. 99 (2007) 1161–1173.

[37]

X. Wang, G. Fang, Y. Li, M. Ding, H. Gong, Y. Li, Differential antioxidant responses to cold stress in cell suspension cultures of two subspecies of rice, Plant Cell Tissue Organ Cult. 113 (2013) 353–361.

[38]

H. Thordal-Christensen, Z. Zhang, Y. Wei, D.B. Collinge, Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction, Plant J. 11 (1997) 1187–1194.

[39]

L. Huang, Q. Sun, F. Qin, C. Li, Y. Zhao, D.X. Zhou, Down–regulation of a SILENT INFORMATION REGULATOR2–related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice, Plant Physiol. 144 (2007) 1508–1519.

[40]

M. Sagi, R.T. Omarov, S.H. Lips, The Mo–hydroxylases xanthine dehydrogenase and aldehyde oxidase in ryegrass as affected by nitrogen and salinity, Plant Sci. 135 (1998) 125–135.

[41]

J. Zhao, N. Yu, M. Ju, B. Fan, Y. Zhang, E. Zhu, M. Zhang, K. Zhang, ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice, J. Exp. Bot. 70 (2019) 6277–6291.

[42]

I. Jajic, T. Sarna, K. Strzalka, Senescence, stress, and reactive oxygen species, Plants 4 (2015) 393–411.

[43]

S. Watanabe, Y. Kounosu, H. Shimada, A. Sakamoto, Arabidopsis xanthine dehydrogenase mutants defective in purine degradation show a compromised protective response to drought and oxidative stress, Plant Biotechnol. 31 (2014) 173–178.

[44]

X. Ma, W. Wang, F. Bittner, N. Schmidt, R. Berkey, L. Zhang, H. King, Y.I. Zhang, J. Feng, Y. Wen, L. Tan, Y. Li, Q. Zhang, Z. Deng, X. Xiong, S. Xiao, Dual and opposing roles of xanthine dehydrogenase in defense–associated reactive oxygen species metabolism in Arabidopsis, Plant Cell 28 (2016) 1108–1126.

[45]

C. Waszczak, M. Carmody, J. Kangasjärvi, Reactive oxygen species in plant signaling, Annu. Rev. Plant Biol. 69 (2018) 209–236.

[46]

P. Walter, D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation, Science 334 (2011) 1081–1086.

[47]

J.K. Zhu, Abiotic stress signaling and responses in plants, Cell 167 (2016) 313–324.

[48]

G.M. Estavillo, P.A. Crisp, W. Pornsiriwong, M. Wirtz, D. Collinge, C. Carrie, E. Giraud, J. Whelan, P. David, H. Javot, C. Brearley, R. Hell, E. Marin, B.J. Pogson, Evidence for a SAL1–PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis, Plant Cell 23 (2011) 3992–4012.

[49]

Y. Xiao, T. Savchenko, E.K. Baidoo, W. Chehab, D. Hayden, V. Tolstikov, J. Corwin, D. Kliebenstein, J. Keasling, K. Dehesh, Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress–response genes, Cell 149 (2012) 1525–1535.

[50]

C. Vorbach, R. Harrison, M.R. Capecchi, Xanthine oxidoreductase is central to the evolution and function of the innate immune system, Trends Immunol. 24 (2003) 512–517.

[51]

C. Hesberg, R. Hansch, R.R. Mendel, F. Bittner, Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana: Differential gene expression and enzyme activities, J. Biol. Chem. 279 (2004) 13547–13554.

[52]

N.K. Barabás, R.T. Omarov, L. Erdei, S.H. Lips, Distribution of the Mo–enzymes aldehyd oxidase, xanthine dehydrogenase and nitrate reductase in maize (Zea mays L.) nodal roots as affected by nitrogen and salinity, Plant Sci. 155 (2000) 49–58.

[53]

A. Yobi, B.W. Wone, W.X. Xu, D.C. Alexander, L.N. Guo, J.A. Ryals, M.J. Oliver, J.C. Cushman, Metabolomic profling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance, Mol. Plant 6 (2013) 369–385.

[54]

Z. Wang, Y. Wang, X. Hong, D. Hu, C. Liu, J. Yang, Y. Li, Y. Huang, Y. Feng, H. Gong, Y. Li, G. Fang, H. Tang, Y. Li, Functional inactivation of UDP–N–acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice, J. Exp. Bot. 66 (2015) 973–987.

[55]

G. Brychkova, R. Fluhr, M. Sagi, Formation of xanthine and the use of purine metabolites as a nitrogen source in Arabidopsis plants, Plant Signal. Behav. 3 (11) (2008) 999–1001.

[56]

H. Huang, F. Ullah, D.X. Zhou, M. Yi, Y. Zhao, Mechanisms of ROS regulation of plant development and stress responses, Front. Plant Sci. 10 (2019) 800.

[57]

Y. Rao, R. Jiao, S. Wang, X. Wu, H. Ye, C. Pan, S. Li, D. Xin, W. Zhou, G. Dai, J. Hu, D. Ren, Y. Wang, SPL36 encodes a receptor–like protein kinase that regulates programmed cell death and defense responses in rice, Rice 14 (2021) 34.

[58]

J.T. van Dongen, F. Licausi, Oxygen sensing and signaling, Annu. Rev. Plant Biol. 66 (2015) 345–367.

[59]

G. Song, C.T. Kwon, S.H. Kim, Y. Shim, C. Lim, H.J. Koh, G. An, K. Kang, N.C. Paek, The rice SPOTTED LEAF4 (SPL4) encodes a plant spastin that inhibits ROS accumulation in leaf development and functions in leaf senescence, Front. Plant Sci. 9 (2019) 1925.

[60]

N. Nelson, W. Junge, Structure and energy transfer in photosystems of oxygenic photosynthesis, Annu. Rev. Biochem. 84 (2015) 659–683.

[61]

J. Zhang, H. Yuan, Y. Yang, T. Fish, S.M. Lyi, T.W. Thannhauser, L. Zhang, L.i. Li, Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis, J. Exp. Bot. 67 (2016) 2731–2744.

[62]

Z. Qiu, D. Chen, L. He, S. Zhang, Z. Yang, Y. Zhang, Z. Wang, D. Ren, Q. Qian, L. Guo, L. Zhu, The rice white green leaf 2 gene causes defects in chloroplast development and affects the plastid ribosomal protein S9, Rice 11 (2018) 39.

[63]

N. Ye, G. Zhu, Y. Liu, Y. Li, J. Zhang, ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress, Plant Cell Physiol. 52 (2011) 689–698.

The Crop Journal
Pages 310-322
Cite this article:
Xu J, Pan C, Lin H, et al. A rice XANTHINE DEHYDROGENASE gene regulates leaf senescence and response to abiotic stresses. The Crop Journal, 2022, 10(2): 310-322. https://doi.org/10.1016/j.cj.2021.05.011

342

Views

6

Downloads

10

Crossref

10

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 16 March 2021
Revised: 19 May 2021
Accepted: 11 June 2021
Published: 01 July 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return