AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Origin, evolution, and molecular function of DELLA proteins in plants

Huidan Xueb,cXiang GaobPeng Hea( )Guanghui Xiaoa( )
College of Life Sciences, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, Shaanxi, China
School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710012, Shaanxi, China
Show Author Information

Abstract

Gibberellic acid (GA), a ubiquitous phytohormone, has various effects on regulators of plant growth and development. GAs promote growth by overcoming growth restraint mediated by DELLA proteins (DELLAs). DELLAs, in the GRAS family of plant-specific nuclear proteins, are nuclear transcriptional regulators harboring a unique N-terminal GA perception region for binding the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1) and a C-terminal GRAS domain necessary for GA repression activity via interaction with multiple regulatory proteins. The N-terminal conserved region of DELLAs evolved to form a mode of GID1/DELLA-mediated GA signaling originating in bryophytes and ferns. Binding of GA to GID1 increases the affinity between DELLAs and a SCF E3 ubiquitin–ligase complex, thus promoting the eventual destruction of DELLAs by the 26S proteasome. DELLAs negatively regulate GA response by releasing transcription factors to directly activate downstream genes and indirectly regulate GA biosynthesis genes increasing GA responsiveness and feedback control by promoting GID1 transcription. GA communicates extensively with other plant hormones and uses crosstalk to regulate plant growth and development. In this review, we summarize current understanding of evolutionary DELLA-mediated gibberellin signaling and functional diversification of DELLA, focusing primarily on interactions of DELLAs with diverse phytohormones.

References

[1]

T.P. Sun, F. Gubler, Molecular mechanism of gibberellin signaling in plants, Annu. Rev. Plant Biol. 55 (2004) 197–223.

[2]

J.M. Davière, M. de Lucas, S. Prat, Transcriptional factor interaction: a central step in DELLA function, Curr. Opin. Genet. Dev. 18 (2008) 295–303.

[3]

C. Rodrigues, L.P.D. Vandenberghe, J. de Oliveira, C.R. Soccol, New perspectives of gibberellic acid production: a review, Crit. Rev. Biotechnol. 32 (2012) 263–273.

[4]

P. Hedden, A.L. Phillips, Gibberellin metabolism: new insights revealed by the genes, Trends Plant Sci. 5 (2000) 523–530.

[5]

X.D. Fu, D.E. Richards, B. Fleck, D.X. Xie, N. Burton, N.P. Harberd, The Arabidopsis mutant sleepy1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates, Plant Cell 16 (2004) 1406–1418.

[6]

T.P. Sun, Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development, Plant Physiol. 154 (2010) 567–570.

[7]

J. Peng, D.E. Richards, N.M. Hartley, G.P. Murphy, K.M. Devos, J.E. Flintham, J. Beales, L.J. Fish, A.J. Worland, F. Pelica, D. Sudhakar, P. Christou, J.W. Snape, M.D. Gale, N.P. Harberd, ‘Green revolution’ genes encode mutant gibberellin response modulators, Nature 400 (1999) 256–261.

[8]

P.K. Boss, M.R. Thomas, Association of dwarfism and floral induction with a grape ‘green revolution’ mutation, Nature 416 (2002) 847–850.

[9]

X.L. Hou, W.W. Hu, L.S. Shen, L.Y.C. Lee, Z. Tao, J.H. Han, H. Yu, Global identification of DELLA target genes during Arabidopsis flower development, Plant Physiol. 147 (2008) 1126–1142.

[10]

J. Peng, P. Carol, D.E. Richards, K.E. King, R.J. Cowling, G.P. Murphy, N.P. Harberd, The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses, Genes Dev. 11 (1997) 3194–3205.

[11]

K.M. McGinnis, S.G. Thomas, J.D. Soule, L.C. Strader, J.M. Zale, T.P. Sun, C.M. Steber, The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase, Plant Cell 15 (2003) 1120–1130.

[12]

A. Sasaki, H. Itoh, K. Gomi, M. Ueguchi-Tanaka, K. Ishiyama, M. Kobayashi, D.H. Jeong, G. An, H. Kitano, M. Ashikari, M. Matsuoka, Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant, Science 299 (2003) 1896–1898.

[13]

L.C. Strader, S. Ritchie, J.D. Soule, K.M. McGinnis, C.M. Steber, Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 12771–12776.

[14]

M. Ueguchi-Tanaka, M. Ashikari, M. Nakajima, H. Itoh, E. Katoh, M. Kobayashi, T.Y. Chow, Y.C. Hsing, H. Kitano, I. Yamaguchi, M. Matsuoka, GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin, Nature 437 (2005) 693–698.

[15]

K. Murase, Y. Hirano, T.P. Sun, T. Hakoshima, Gibberellin-induced DELLA recognition by the gibberellin receptor GID1, Nature 456 (2008) 459–463.

[16]

A. Shimada, M. Ueguchi-Tanaka, T. Nakatsu, M. Nakajima, Y. Naoe, H. Ohmiya, H. Kato, M. Matsuoka, Structural basis for gibberellin recognition by its receptor GID1, Nature 456 (2008) 520–523.

[17]

J. Cheng, M.M. Zhang, B. Tan, Y.J. Jiang, X.B. Zheng, X. Ye, Z.J. Guo, T.T. Xiong, W. Wang, J.D. Li, J.C. Feng, A single nucleotide mutation in GID1c disrupts its interaction with DELLA1 and causes a GA-insensitive dwarf phenotype in peach, Plant Biotechnol. J. 17 (2019) 1723–1735.

[18]

X. Fu, N.P. Harberd, Auxin promotes Arabidopsis root growth by modulating gibberellin response, Nature 421 (2003) 740–743.

[19]

P. Achard, H. Cheng, L. De Grauwe, J. Decat, H. Schoutteten, T. Moritz, D. Van Der Straeten, J.R. Peng, N.P. Harberd, Integration of plant responses to environmentally activated phytohormonal signals, Science 311 (2006) 91–94.

[20]

H. Xu, Q. Liu, T. Yao, X. Fu, Shedding light on integrative GA signaling, Curr. Opin. Plant Biol. 21 (2014) 89–95.

[21]

M. Radley, Gibberellin-like substances in plants, Nature 191 (1961) 684–685.

[22]

Jiro Kato, William K. Purves, Bernard O. Phinney, Gibberellin-like substances in plants, Nature 196 (1962) 687–688.

[23]

S.C. Lee, H. Cheng, K.E. King, W.F. Wang, Y.W. He, A. Hussain, J. Lo, N.P. Harberd, J.R. Peng, Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition, Genes Dev. 16 (2002) 646–658.

[24]

P. Achard, A. Herr, D.C. Baulcombe, N.P. Harberd, Modulation of floral development by a gibberellin-regulated microRNA, Development 131 (2004) 3357–3365.

[25]

P. Achard, L. Liao, C. Jiang, T. Desnos, J. Bartlett, X. Fu, N.P. Harberd, DELLAs contribute to plant photomorphogenesis, Plant Physiol. 143 (2007) 1163–1172.

[26]

P. Achard, M. Baghour, A. Chapple, P. Hedden, D. Van Der Straeten, P. Genschik, T. Moritz, N.P. Harberd, The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation ot floral meristem-identity genes, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 6484–6489.

[27]

Y. Yasumura, M. Crumpton-Taylor, S. Fuentes, N.P. Harberd, Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution, Curr. Biol. 17 (2007) 1225–1230.

[28]

X.H. Gao, X.Z. Huang, S.L. Xiao, X.D. Fu, Evolutionarily conserved DELLA-mediated gibberellin signaling in plants, J. Integr. Plant Biol. 50 (2008) 825–834.

[29]

K. Hirano, M. Nakajima, K. Asano, T. Nishiyama, H. Sakakibara, M. Kojima, E. Katoh, H. Xiang, T. Tanahashi, M. Hasebe, J.A. Banks, M. Ashikari, H. Kitano, M. Ueguchi-Tanaka, M. Matsuoka, The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens, Plant Cell 19 (2007) 3058–3079.

[30]

K. Aya, Y. Hiwatashi, M. Kojima, H. Sakakibara, M. Ueguchi-Tanaka, M. Hasebe, M. Matsuoka, The gibberellin perception system evolved to regulate a pre-existing GAMYB-mediated system during land plant evolution, Nat. Commun. 2 (2011) 544.

[31]

J.H. Chen, T.L. Cheng, P.K. Wang, L. Tian, G.P. Wang, Y.M. Luo, J.J. Wang, L.M. Yang, J.S. Shi, Genome-wide bioinformatics analysis of DELLA-family proteins from plants, Plant Omics 6 (2013) 201–207.

[32]

L. Tyler, S.G. Thomas, J.H. Hu, A. Dill, J.M. Alonso, J.R. Ecker, T.P. Sun, DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis, Plant Physiol. 135 (2004) 1008–1019.

[33]

N.R. Hofmann, A structure for plant-specific transcription factors: the GRAS domain revealed, Plant Cell 28 (2016) 993–994.

[34]

C. Bolle, The role of GRAS proteins in plant signal transduction and development, Planta 218 (2004) 683–692.

[35]

R. Du, S.H. Niu, Y. Liu, X.R. Sun, I. Porth, Y.A. El-Kassaby, W. Li, The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers, Sci. Rep. 7 (2017) 16637.

[36]

H. Itoh, A. Shimada, M. Ueguchi-Tanaka, N. Kamiya, Y. Hasegawa, M. Ashikari, M. Matsuoka, Overexpression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice, Plant J. 44 (2005) 669–679.

[37]

H. Itoh, M. Ueguchi-Tanaka, Y. Sato, M. Ashikari, M. Matsuoka, The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei, Plant Cell 14 (2002) 57–70.

[38]

M. Ueguchi-Tanaka, M. Nakajima, E. Katoh, H. Ohmiya, K. Asano, S. Saji, H.Y. Xiang, M. Ashikari, H. Kitano, I. Yamaguchi, M. Matsuokaa, Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin, Plant Cell 19 (2007) 2140–2155.

[39]

E. Cassani, E. Bertolini, F. Cerino Badone, M. Landoni, D. Gavina, A. Sirizzotti, R. Pilu, Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene, Mol. Breed. 24 (2009) 375–385.

[40]

L. Camut, J.M. Daviere, P. Achard, Dynamic regulation of DELLA protein activity: SPINDLY and SECRET AGENT unmasked, Mol. Plant 10 (2017) 785–787.

[41]

A. Dill, H.S. Jung, T.P. Sun, The DELLA motif is essential for gibberellin-induced degradation of RGA, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 14162–14167.

[42]

A.L. Silverstone, H.S. Jung, A. Dill, H. Kawaide, Y. Kamiya, T.P. Sun, Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis, Plant Cell 13 (2001) 1555–1565.

[43]

K. Hirano, K. Asano, H. Tsuji, M. Kawamura, H. Mori, H. Kitano, M. Ueguchi-Tanaka, M. Matsuoka, characterization of the molecular mechanism underlying gibberellin perception complex formation in rice, Plant Cell 22 (2010) 2680–2696.

[44]

C. Tian, P. Wan, S. Sun, J. Li, M. Chen, Genome-wide analysis of the GRAS gene family in rice and Arabidopsis, Plant Mol. Biol. 54 (2004) 519–532.

[45]

M. Li, F. An, W. Li, M. Ma, Y. Feng, X. Zhang, H. Guo, DELLA proteins interact with FLC to repress flowering transition, J. Integr. Plant Biol. 58 (2016) 642–655.

[46]

J.M. Gagne, B.P. Downes, S.H. Shiu, A.M. Durski, R.D. Vierstra, The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 11519–11524.

[47]

A. Dill, S.G. Thomas, J.H. Hu, C.M. Steber, T.P. Sun, The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation, Plant Cell 16 (2004) 1392–1405.

[48]

R. Zentella, Z.L. Zhang, M. Park, S.G. Thomas, A. Endo, K. Murase, C.M. Fleet, Y. Jikumaru, E. Nambara, Y. Kamiya, T.P. Sun, Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis, Plant Cell 19 (2007) 3037–3057.

[49]

K. Van De Velde, S.G. Thomas, F. Heyse, R. Kaspar, D. Van Der Straeten, A. Rohde, N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat Green Revolution alleles, Mol. Plant 14 (2021) 679–687.

[50]

Y. Eshed, Z.B. Lippman, Revolutions in agriculture chart a course for targeted breeding of old and new crops, Science 366 (2019) eaax0025.

[51]

P. Achard, W.H. Vriezen, D. van Der Straeten, N.P. Harberd, Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function, Plant Cell 15 (2003) 2816–2825.

[52]

F. An, X. Zhang, Z. Zhu, Y. Ji, W. He, Z. Jiang, M. Li, H. Guo, Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings, Cell Res. 22 (2012) 915–927.

[53]

H. Shohat, N. Illouz-Eliaz, Y. Kanno, M. Seo, D. Weiss, The tomato DELLA protein PROCERA promotes abscisic acid responses in guard cells by upregulating an abscisic acid transporter, Plant Physiol. 184 (2020) 518–528.

[54]

X. Hou, L. Ding, H. Yu, Crosstalk between GA and JA signaling mediates plant growth and defense, Plant Cell Rep. 32 (2013) 1067–1074.

[55]

X. Hou, L.Y.C. Lee, K. Xia, Y. Yan, H. Yu, DELLAs modulate jasmonate signaling via competitive binding to JAZs, Dev. Cell 19 (2010) 884–894.

[56]

G.J. Hong, X.Y. Xue, Y.B. Mao, L.J. Wang, X.Y. Chen, Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression, Plant Cell 24 (2012) 2635–2648.

[57]

H. Cheng, S. Song, L. Xiao, H.M. Soo, Z. Cheng, D. Xie, J. Peng, G.P. Copenhaver, Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis, PLoS Genet. 5 (2009) e1000440.

[58]

L. Navarro, R. Bari, P. Achard, P. Lisón, A. Nemri, N.P. Harberd, J.D.G. Jones, DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling, Curr. Biol. 18 (2008) 650–655.

[59]

Y. Li, Y. Yang, Y. Hu, H. Liu, M. He, Z. Yang, F. Kong, X.u. Liu, X. Hou, DELLA and EDS1 Form a feedback regulatory module to fine-tune plant growth-defense tradeoff in Arabidopsis, Mol. Plant 12 (2019) 1485–1498.

[60]

C. Li, X. He, X.Y. Luo, L. Xu, L.L. Liu, L. Min, L. Jin, L.F. Zhu, X.L. Zhang, Cotton WRKY1 Mediates the Plant Defense-to-Development Transition during Infection of Cotton by Verticillium dahliae by Activating JASMONATE ZIM-DOMAIN1 Expression, Plant Physiol. 166 (2014) 2179–2194.

[61]

J.X. He, J.M. Gendron, Y. Yang, J. Li, Z.Y. Wang, The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 10185–10190.

[62]

M. Szekeres, K. Németh, Z. Koncz-Kálmán, J. Mathur, A. Kauschmann, T. Altmann, G.P. Rédei, F. Nagy, J. Schell, C. Koncz, Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis, Cell 85 (1996) 171–182.

[63]

J. Gallego-Bartolome, E.G. Minguet, F. Grau-Enguix, M. Abbas, A. Locascio, S.G. Thomas, D. Alabadi, M.A. Blazquez, Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 13446–13451.

[64]

C. Mussig, G.H. Shin, T. Altmann, Brassinosteroids promote root growth in Arabidopsis, Plant Physiol. 133 (2003) 1261–1271.

[65]

H.N. Tong, Y.H. Xiao, D.P. Liu, S.P. Gao, L.C. Liu, Y.H. Yin, Y. Jin, Q. Qian, C.C. Chu, Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice, Plant Cell 26 (2014) 4376–4393.

[66]

S.J. Unterholzner, W. Rozhon, M. Papacek, J. Ciomas, T. Lange, K.G. Kugler, K.F. Mayer, T. Sieberer, B. Poppenberger, Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis, Plant Cell 27 (2015) 2261–2272.

[67]

H. Tong, C. Chu, Functional specificities of brassinosteroid and potential utilization for crop improvement, Trends Plant Sci. 23 (2018) 1016–1028.

[68]

M. de Lucas, J.M. Davière, M. Rodríguez-Falcón, M. Pontin, J.M. Iglesias-Pedraz, S. Lorrain, C. Fankhauser, M.A. Blázquez, E. Titarenko, S. Prat, A molecular framework for light and gibberellin control of cell elongation, Nature 451 (2008) 480–484.

[69]

S. Feng, C. Martinez, G. Gusmaroli, Y.U. Wang, J. Zhou, F. Wang, L. Chen, L.U. Yu, J.M. Iglesias-Pedraz, S. Kircher, E. Schäfer, X. Fu, L.M. Fan, X.W. Deng, Coordinated regulation of Arabidopsis thaliana development by light and gibberellins, Nature 451 (2008) 475–479.

[70]

C.D. Crocco, A. Locascio, C.M. Escudero, D. Alabadi, M.A. Blazquez, J.F. Botto, The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana, Nat. Commun. 6 (2015) 6202.

[71]

D.F. Placido, J. Sandhu, S.J. Sato, N. Nersesian, T. Quach, T.E. Clemente, P.E. Staswick, H. Walia, The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat, Plant Biotechnol. J. 18 (2020) 1955–1968.

[72]

O. Yanai, E. Shani, K. Dolezal, P. Tarkowski, R. Sablowski, G. Sandberg, A. Samach, N. Ori, Arabidopsis KNOXI proteins activate cytokinin biosynthesis, Curr. Biol. 15 (2005) 1566–1571.

[73]

D. Cao, A. Hussain, H. Cheng, J. Peng, Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis, Planta 223 (2005) 105–113.

[74]

D.H. Kim, S. Yamaguchi, S. Lim, E. Oh, J. Park, A. Hanada, Y. Kamiya, G. Choi, SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5, Plant Cell 20 (2008) 1260–1277.

[75]

S. Lim, J. Park, N. Lee, J. Jeong, S. Toh, A. Watanabe, J. Kim, H. Kang, D.H. Kim, N. Kawakami, G. Choi, ABA-INSENSITIVE3, ABA–INSENSITIVE5, and DELLAs interact to activate the expression of sOMNUS and other high-temperature-inducible genes in I\imbibed seeds in Arabidopsis, Plant Cell 25 (2013) 4863–4878.

[76]

Y. Hu, X. Han, M. Yang, M. Zhang, J. Pan, D. Yu, The transcription factor INDUCER OF CBF EXPRESSION1 interacts with ABSCISIC ACID INSENSITIVE5 and DELLA proteins to fine-tune abscisic acid signaling during seed germination in Arabidopsis, Plant Cell 31 (2019) 1520–1538.

[77]

F.E. Vaistij, T. Barros-Galvão, A.F. Cole, A.D. Gilday, Z. He, Y.i. Li, D. Harvey, T.R. Larson, I.A. Graham, MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 8442–8447.

[78]

M. Ogawa, A. Hanada, Y. Yamauchi, A. Kuwalhara, Y. Kamiya, S. Yamaguchi, Gibberellin biosynthesis and response during Arabidopsis seed germination, Plant Cell 15 (2003) 1591–1604.

[79]

D.N. Cao, H. Cheng, W. Wu, H.M. Soo, J.R. Peng, Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis, Plant Physiol. 142 (2006) 509–525.

[80]

G. Cardon, S. Höhmann, J. Klein, K. Nettesheim, H. Saedler, P. Huijser, Molecular characterisation of the Arabidopsis SBP-box genes, Gene 237 (1999) 91–104.

[81]

M.W. Rhoades, B.J. Reinhart, L.P. Lim, C.B. Burge, B. Bartel, D.P. Bartel, Prediction of plant microRNA targets, Cell 110 (2002) 513–520.

[82]

J.W. Wang, B. Czech, D. Weigel, miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana, Cell 138 (2009) 738–749.

[83]

G. Wu, M.Y. Park, S.R. Conway, J.W. Wang, D. Weigel, R.S. Poethig, The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis, Cell 138 (2009) 750–759.

[84]

H.L. An, C. Roussot, P. Suarez-Lopez, L. Corbesler, C. Vincent, M. Pineiro, S. Hepworth, A. Mouradov, S. Justin, C. Turnbull, G. Coupland, CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis, Development 131 (2004) 3615–3626.

[85]

H. Wang, J. Pan, Y. Li, D. Lou, Y. Hu, D. Yu, The DELLA-CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering, Plant Physiol. 172 (2016) 479–488.

[86]

F. Xu, T. Li, P.B. Xu, L. Li, S.S. Du, H.L. Lian, H.Q. Yang, U.I. Flügge, DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis, FEBS Lett. 590 (2016) 541–549.

[87]

W. Li, H. Wang, D. Yu, Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions, Mol. Plant 9 (2016) 1492–1503.

[88]

L. Zhang, L. Chen, D. Yu, Transcription factor WRKY75 interacts with DELLA proteins to affect flowering, Plant Physiol. 176 (2018) 790–803.

[89]

J. Park, K.T. Nguyen, E. Park, J.S. Jeon, G. Choi, DELLA proteins and their interacting RING finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis, Plant Cell 25 (2013) 927–943.

[90]

A. Campanaro, R. Battaglia, M. Galbiati, A. Sadanandom, C. Tonelli, L. Conti, SUMO proteases OTS1 and 2 control filament elongation through a DELLA-dependent mechanism, Plant Reprod. 29 (2016) 287–290.

[91]

P. Achard, F. Gong, S. Cheminant, M. Alioua, P. Hedden, P. Genschik, The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth–repressing DELLA proteins via its effect on gibberellin metabolism, Plant Cell 20 (2008) 2117–2129.

[92]

S. Livne, V.S. Lor, I. Nir, N. Eliaz, A. Aharoni, N.E. Olszewski, Y. Eshed, D. Weiss, Uncovering DELLA-independent gibberellin responses by characterizing new tomato procera mutants, Plant Cell 27 (2015) 1579–1594.

[93]

Q. Qin, W. Wang, X. Guo, J. Yue, Y. Huang, X. Xu, J. Li, S. Hou, L.J. Qu, Arabidopsis DELLA protein degradation is controlled by a type-one protein phosphatase, TOPP4, PLoS Genet. 10 (2014) e1004464.

[94]

E. Oh, J.Y. Zhu, M.Y. Bai, R.A. Arenhart, Y. Sun, Z.Y. Wang, Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl, Elife 3 (2014) e03031.

[95]

J. Chaiwanon, W. Wang, J.Y. Zhu, E. Oh, Z.Y. Wang, Information integration and communication in plant growth regulation, Cell 164 (2016) 1257–1268.

[96]

K. Liu, Y.H. Li, X.N. Chen, L.J. Li, K. Liu, H.P. Zhao, Y.D. Wang, S.C. Han, ERF72 interacts with ARF6 and BZR1 to regulate hypocotyl elongation in Arabidopsis, J. Exp. Biol. 69 (2018) 3933–3947.

[97]

M.Y. Bai, J.X. Shang, E. Oh, M. Fan, Y. Bai, R. Zentella, T.P. Sun, Z.Y. Wang, Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis, Nat. Cell Biol. 14 (2012) 810–817.

[98]

M. Ben-Targem, D. Ripper, M. Bayer, L. Ragni, Auxin and Gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis, J. Exp. Bot. 72 (2021) 3647–3660.

[99]

J.E. Olsen, Light and temperature sensing and signaling in induction of bud dormancy in woody plants, Plant Mol. Biol. 73 (2010) 37–47.

[100]

H. Guo, J.R. Ecker, Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor, Cell 115 (2003) 667–677.

[101]

N.M.D. la Rosa, B. Sotillo, P. Miskolczi, D.J. Gibbs, J. Vicente, P. Carbonero, L. Onate-Sanchez, M.J. Holdsworth, R. Bhalerao, D. Alabadi, M.A. Blazquez, Large-Scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners, Plant Physiol. 166 (2014) 1022–1032.

[102]

A. Serrano-Mislata, S. Bencivenga, M. Bush, K. Schiessl, S. Boden, R. Sablowski, DELLA genes restrict inflorescence meristem function independently of plant height, Nat. Plants 3 (2017) 749–754.

[103]

Z. Liao, H. Yu, J. Duan, K. Yuan, C. Yu, X. Meng, L. Kou, M. Chen, Y. Jing, G. Liu, S.M. Smith, J. Li, SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice, Nat. Commun. 10 (2019) 2738.

[104]

J. Hoe Kim, H. Tsukaya, Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo, J. Exp. Bot. 66 (2015) 6093–6107.

[105]

J. Liu, J.H. Rice, N. Chen, T.J. Baum, T. Hewezi, M.A. Blazquez, Synchronization of developmental processes and defense signaling by growth regulating transcription factors, PLoS ONE 9 (2014) e98477.

[106]

J.H. Kim, H. Kende, A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 13374–13379.

[107]

X. Li, Q. Qian, Z. Fu, Y. Wang, G. Xiong, D. Zeng, X. Wang, X. Liu, S. Teng, F. Hiroshi, M. Yuan, D.A. Luo, B. Han, J. Li, Control of tillering in rice, Nature 422 (2003) 618–621.

[108]

Q. Lin, Z. Zhang, F. Wu, M. Feng, Y. Sun, W. Chen, Z. Cheng, X. Zhang, Y. Ren, C. Lei, S. Zhu, J. Wang, Z. Zhao, X. Guo, H. Wang, J. Wan, The APC/C–TE E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA, Plant Cell 32 (2020) 1973–1987.

[109]

J.H. Kim, Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants, BMB Rep. 52 (2019) 227–238.

[110]

S. Li, Y. Tian, K. Wu, Y. Ye, J. Yu, J. Zhang, Q. Liu, M. Hu, H. Li, Y. Tong, N.P. Harberd, X. Fu, Modulating plant growth-metabolism coordination for sustainable agriculture, Nature 560 (2018) 595–600.

[111]

S. Qiao, S. Sun, L. Wang, Z. Wu, C. Li, X. Li, T. Wang, L. Leng, W. Tian, T. Lu, X. Wang, The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture, Plant Cell 29 (2017) 292–309.

[112]

K.O. Hirano, H. Yoshida, K. Aya, M. Kawamura, M. Hayashi, T. Hobo, K. Sato-Izawa, H. Kitano, M. Ueguchi-Tanaka, M. Matsuoka, SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF and LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice, Mol. Plant 10 (2017) 590–604.

[113]

K. Wu, S. Wang, W. Song, J. Zhang, Y. Wang, Q. Liu, J. Yu, Y. Ye, S. Li, J. Chen, Y. Zhao, J. Wang, X. Wu, M. Wang, Y. Zhang, B. Liu, Y. Wu, N.P. Harberd, X. Fu, Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice, Science 367 (2020) eaaz2046.

[114]

T. Ait-ali, C. Rands, N.P. Harberd, Flexible control of plant architecture and yield via switchable expression of Arabidopsis gai, Plant Biotechnol. J. 1 (2003) 337–343.

[115]

J.M. Daviere, M. Wild, T. Regnault, N. Baumberger, H. Eisler, P. Genschik, P. Achard, Class I TCP-DELLA interactions in inflorescence ihoot apex determine plant height, Curr. Biol. 24 (2014) 1923–1928.

[116]

L. Moubayidin, S. Perilli, R. Dello Ioio, R. Di Mambro, P. Costantino, S. Sabatini, The rate of cell differentiation controls the Arabidopsis root meristem growth phase, Curr. Biol. 20 (2010) 1138–1143.

[117]

I. Nir, H. Shohat, I. Panizel, N. Olszewski, A. Aharoni, D. Weiss, The tomato DELLA protein PROCERA acts in gGuard cells to promote stomatal closure, Plant Cell 29 (2017) 3186–3197.

[118]

Q.Q. Zhang, J.G. Wang, L.Y. Wang, J.F. Wang, Q. Wang, P. Yu, M.Y. Bai, M. Fan, Gibberellin repression of axillary bud formation in Arabidopsis by modulation of DELLA-SPL9 complex activity, J. Integr. Plant Biol. 62 (2020) 421–432.

[119]

G.W. Bassel, R.T. Mullen, J.D. Bewley, procera is a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant, J. Exp. Bot. 59 (2008) 585–593.

[120]

J. Hu, A. Israeli, N. Ori, T.P. Sun, The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato, Plant Cell 30 (2018) 1710–1728.

[121]

C. Marti, D. Orzaez, P. Ellul, V. Moreno, J. Carbonell, A. Granell, Silencing of DELLA induces facultative parthenocarpy in tomato fruits, Plant J. 52 (2007) 865–876.

[122]

E. Oh, S. Yamaguchi, J. Hu, J. Yusuke, B. Jung, I. Paik, H.S. Lee, T.P. Sun, Y. Kamiya, G. Choi, PIL5, a phytochrome–interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds, Plant Cell 19 (2007) 1192–1208.

[123]

J. Luo, N. Ma, H. Pei, J. Chen, J. Li, J. Gao, A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2, J. Exp. Bot. 64 (2013) 5075–5084.

[124]

J. Lan, Q. Lin, C. Zhou, Y. Ren, X.i. Liu, R. Miao, R. Jing, C. Mou, T. Nguyen, X. Zhu, Q. Wang, X. Zhang, X. Guo, S. Liu, L. Jiang, J. Wan, Small grain and semi-dwarf 3, a WRKY transcription factor, negatively regulates plant height and grain size by stabilizing SLR1 expression in rice, Plant Mol. Biol. 104 (2020) 429–450.

[125]

M. Wild, J.M. Davière, S. Cheminant, T. Regnault, N. Baumberger, D. Heintz, R. Baltz, P. Genschik, P. Achard, The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses, Plant Cell 24 (2012) 3307–3319.

[126]

N. Blanco-Tourinan, A. Serrano-Mislata, D. Alabadi, Regulation of DELLA proteins by post-translational modifications, Plant Cell Physiol. 61 (2020) 1891–1901.

[127]

L. Conti, S. Nelis, C. Zhang, A. Woodcock, R. Swarup, M. Galbiati, C. Tonelli, R. Napier, P. Hedden, M. Bennett, A. Sadanandom, Small Ubiquitin-like Modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin, Dev. Cell 28 (2014) 102–110.

[128]

M.A. Nohales, S.A. Kay, GIGANTEA gates gibberellin signaling through stabilization of the DELLA proteins in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 21893–21899.

[129]

J. Yan, X. Li, B. Zeng, M. Zhong, J. Yang, P. Yang, X. Li, C. He, J. Lin, X. Liu, X. Zhao, FKF1 F-box protein promotes flowering in part by negatively regulating DELLA protein stability under long-day photoperiod in Arabidopsis, J. Integr. Plant Biol. 62 (1) (2020) 1717–1740.

[130]

N. Blanco-Touriñán, M. Legris, E.G. Minguet, C. Costigliolo-Rojas, M.A. Nohales, E. Iniesto, M. García-León, M. Pacín, N. Heucken, T. Blomeier, A. Locascio, M. Černý, D. Esteve-Bruna, M. Díez-Díaz, B. Brzobohatý, H. Frerigmann, M.D. Zurbriggen, S.A. Kay, V. Rubio, M.A. Blázquez, J.J. Casal, D. Alabadí, COP1 destabilizes DELLA proteins in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 13792–13799.

[131]

C. Dai, H.W. Xue, Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling, EMBO J. 29 (2010) 1916–1927.

[132]

A. Briones-Moreno, J. Hernandez-Garcia, C. Vargas-Chavez, F.J. Romero-Campero, J.M. Romero, F. Valverde, M.A. Blazquez, Evolutionary analysis of DELLA-associated transcriptional networks, Front. Plant Sci. 8 (2017) 626.

[133]

A. Ikeda, M. Ueguchi-Tanaka, Y. Sonoda, H. Kitano, M. Koshioka, Y. Futsuhara, M. Matsuoka, J. Yamaguchi, slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8, Plant Cell 13 (2001) 999–1010.

[134]

S. Fujioka, H. Yamane, C.R. Spray, M. Katsumi, B.O. Phinney, P. Gaskin, J. MacMillan, N. Takahashi, The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins, Proc. Natl. Acad. Sci. U. S. A. 85 (1988) 9031–9035.

[135]

S. Ahmar, S. Saeed, M.H.U. Khan, S. Ullah Khan, F. Mora-Poblete, M. Kamran, A. Faheem, A. Maqsood, M. Rauf, S. Saleem, W.J. Hong, K.H. Jung, A revolution toward gene-editing technology and its application to crop improvement, Int. J. Mol. Sci. 21 (2020) 5665.

[136]

A. Okuzaki, T. Ogawa, C. Koizuka, K. Kaneko, M. Inaba, J. Imamura, N. Koizuka, CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus, Plant Physiol. Biochem. 131 (2018) 63–69.

[137]

S. Soyk, N.A. Müller, S.J. Park, I. Schmalenbach, K.E. Jiang, R. Hayama, L. Zhang, J. Van Eck, J.M. Jiménez-Gómez, Z.B. Lippman, Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato, Nat. Genet. 49 (2017) 162–168.

[138]

A. Kinoshita, C.A. ten Hove, R. Tabata, M. Yamada, N. Shimizu, T. Ishida, K. Yamaguchi, S. Shigenobu, Y. Takebayashi, S. Iuchi, M. Kobayashi, T. Kurata, T. Wada, M. Seo, M. Hasebe, I. Blilou, H. Fukuda, B. Scheres, R. Heidstra, Y. Kamiya, S. Sawa, A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem, Development 142 (2015) 444–453.

[139]

X. Fu, D.E. Richards, T. Ait-ali, L.W. Hynes, H. Ougham, J. Peng, N.P. Harberd, Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor, Plant Cell 14 (2002) 3191–3200.

[140]

T. Foster, C. Kirk, W.T. Jones, A.C. Allan, R. Espley, S. Karunairetnam, J. Rakonjac, Characterisation of the DELLA subfamily in apple (Malus domestica Borkh.), Tree Genet. Genomes 3 (2007) 187–197.

[141]

X. Yu, B. Cui, M. Ruan, W. Wen, S. Wang, R. Di, M. Peng, Cloning and characterization of GbGI, a DELLA-like gene from cotton (Gossypium barbadense), Plant Growth Regul. 75 (2015) 235–244.

[142]

Y. Gao, J. Chen, Y. Zhao, T. Li, M. Wang, Molecular cloning and expression analysis of a RGA-like gene responsive to plant hormones in Brassica napus, Mol. Biol. Rep. 39 (2012) 1957–1962.

[143]

Y. Sawada, A. Umetsu, Y. Komatsu, J. Kitamura, H. Suzuki, T. Asami, M. Fukuda, I. Honda, W. Mitsuhashi, M. Nakajima, T. Toyomasu, An unusual spliced variant of DELLA protein, a negative regulator of gibberellin signaling, in lettuce, Biosci. Biotechnol. Biochem. 76 (2012) 544–550.

[144]

Q. Shen, J. Cui, X.Q. Fu, T.X. Yan, K.X. Tang, Cloning and characterization of DELLA genes in Artemisia annua, Gen. Mol. Res. 14 (2015) 10037–10049.

[145]

S. Liu, L. Xuan, L.A. Xu, M.R. Huang, M. Xu, Molecular cloning, expression analysis and subcellular localization of four DELLA genes from hybrid poplar, Springerplus 5 (2016) 1129.

[146]

Y.C. Cao, Z.H. Zhang, L.H. Wang, X.L. Sui, Z.X. Zhang, B.X. Zhang, Cloning and characterization of CaGID1s and CaGAI in Capsicum annuum L., J. Integr. Agric. 15 (2016) 775–784.

[147]

Y.C. Zhou, S.J.R. Underhill, Breadfruit (Artocarpus altilis) DELLA genes: gibberellin-regulated stem elongation and response to high salinity and drought, Plant Growth Regul. 83 (2017) 375–383.

[148]

J. Lu, W. Yang, Q. Zhang, Genome-wide identification and characterization of the DELLA subfamily in Prunus mume, J. Am. Soc. Hort. Sci. 140 (2015) 223–232.

The Crop Journal
Pages 287-299
Cite this article:
Xue H, Gao X, He P, et al. Origin, evolution, and molecular function of DELLA proteins in plants. The Crop Journal, 2022, 10(2): 287-299. https://doi.org/10.1016/j.cj.2021.06.005

379

Views

5

Downloads

20

Crossref

22

Web of Science

24

Scopus

5

CSCD

Altmetrics

Received: 28 January 2021
Revised: 08 May 2021
Accepted: 06 July 2021
Published: 15 July 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return