AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Mapping of wheat stripe rust resistance gene Yr041133 by BSR-Seq analysis

Yahui LiaRuiming LincJinghuang HuaXiaohan ShiaDan QiuaPeipei WuaGebremedhin Habteab GoitomaSiqi WangdHongjun ZhangaLi YangaHongwei LiuaQiuhong WubJingzhong XiebYang ZhouaZhiyong Liub( )Hongjie Lia( )
The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
State Key Laboratory for Biology of Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
College of Humanities and Development Studies, China Agricultural University, Beijing 100083, China
Show Author Information

Abstract

Puccinia striiformis Westend. f. sp. tritici (Pst) pathotype CYR34 is widely virulent and prevalent in China. Here, we report identification of a strpie rust resistance (Yr) gene, designated Yr041133, in winter wheat line 041133. This line produced a hypersensitive reaction to CYR34 and conferred resistance to 13 other pathotypes. Resistance to CYR34 in line 041133 was controlled by a single dominant gene. Bulked segregant RNA sequencing (BSR-Seq) was performed on a pair of RNA bulks generated by pooling resistant and susceptible recombinant inbred lines. Yr041133 was mapped to a 1.7 cM genetic interval on the chromosome arm 7BL that corresponded to a 0.8 Mb physical interval (608.9–609.7 Mb) in the Chinese Spring reference genome. Based on its unique physical location Yr041133 differred from the other Yr genes on this chromosome arm.

References

[1]

X.M. Chen, Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat, Can. J. Plant Pathol. 27 (2005) 314–337.

[2]

S. Savary, L. Willocquet, S.J. Pethybridge, P. Esker, N. McRoberts, A. Nelson, The global burden of pathogens and pests on major food crops, Nat. Ecol. Evol. 3 (2019) 430–439.

[3]

Z.Q. Li, S.M. Zeng, Wheat Rust of China, China Agriculture Press, Beijing, China, 2002 (in Chinese).

[4]

X.M. Chen, Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen, Food Secur. 12 (2020) 239–251.

[5]

W.C. Liu, Z.D. Liu, C. Huang, M.H. Lu, J. Liu, Q.P. Yang, Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years, Plant Protect. 42 (2016) 1–9 (in Chinese with English abstract).

[6]

X.M. Chen, Integration of cultivar resistance and fungicide application for control of wheat stripe rust, Can. J. Plant Pathol. 36 (2014) 311–326.

[7]

F.G.H. Lupton, R.C.F. Macer, Inheritance of resistance to yellow rust (Puccinia glumarum Erikss. & Henn.) in seven varieties of wheat, Trans. Br. Mycol. Soc. 45 (1962) 21–45.

[8]
M.N. Wang, X.M. Chen, Stripe rust resistance, in: X.M. Chen, Z.S. Kang (Eds.), Stripe Rust, Springer, Dordrecht, the Netherlands, 2017, pp. 353–558.
[9]

R.A. McIntosh, J. Dubcovsky, W.J. Rogers, X.C. Xia, W.J. Raupp, Catalogue of gene symbols for wheat, supplement, Annu. Wheat Newslett. 66 (2020) 109–149.

[10]

D.J. Han, Q.L. Wang, X.M. Chen, Q.D. Zeng, J.H. Wu, W.B. Xue, G.M. Zhan, L.L. Huang, Z.S. Kang, Emerging Yr26-virulent races of Puccinia striiformis f. sp. tritici are threatening wheat production in the Sichuan Basin, China, Plant Dis. 99 (2015) 754–760.

[11]

B. Liu, T.G. Liu, Z.Y. Zhang, Q.Z. Jia, B.T. Wang, L. Gao, Y.L. Peng, S.L. Jin, W.Q. Chen, Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China, Acta Phytopathol. Sin. 47 (2017) 681–687 (in Chinese with English abstract).

[12]

R.A. McIntosh, J.M. Mu, D.J. Han, Z.S. Kang, Wheat stripe rust resistance gene Yr24/Yr26: a retrospective review, Crop J. 6 (2018) 321–329.

[13]

Q.D. Zeng, C. Shen, F.P. Yuan, Q.L. Wang, J.H. Wu, W.B. Xue, G.M. Zhan, S. Yao, W. Chen, L.L. Huang, D.J. Han, Z.S. Kang, The resistance evaluation of the Yr genes to the main prevalent pathotypes of Puccinia striiformis f. sp. tritici in China, Acta Phytopathol. Sin. 45 (2015) 641–650 (in Chinese with English abstract).

[14]

B.B. Bai, T.G. Liu, B. Liu, L. Gao, W.Q. Chen, High relative parasitic fitness of G22 derivatives is associated with the epidemic potential of wheat stripe rust in China, Plant Dis. 102 (2018) 483–487.

[15]

Q. Li, G.B. Li, W.Y. Yue, L.J. Yang, Z.S. Kang, J.X. Jing, B.T. Wang, Pathogenicity changes of wheat stripe rust fungus and disease resistance of wheat cultivars (lines) in Shaanxi province during 2002–2014, Acta Phytopathol. Sin. 46 (2016) 374–383 (in Chinese with English abstract).

[16]

F.H. McNeal, C.F. Konzak, E.P. Smith, W.S. Tate, T.S. Russel, A uniform system for recording and processing cereal research data, USDA ARS Bull. 42 (1971) 34–121.

[17]

J.Z. Xie, G.H. Guo, Y. Wang, T.Z. Hu, L.L. Wang, J.T. Li, D. Qiu, Y.H. Li, Q.H. Wu, P. Lu, Y.X. Chen, L.L. Dong, M.M. Li, H.Z. Zhang, P.P. Zhang, K.Y. Zhu, B.B. Li, K.R. Deal, N.X. Huo, Y. Zhang, M.C. Luo, S. Liu, Y.Q. Gu, H.J. Li, Z.Y. Liu, A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat, New Phytol. 228 (2020) 1011–1026.

[18]

A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics 30 (2014) 2114–2120.

[19]

International Wheat Genome Sequencing Consortium (IWGSC), Shifting the limits in wheat research and breeding using a fully annotated reference genome, Science 361 (2018) eaar7191.

[20]

A. Dobin, C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T.R. Gingeras, STAR: Ultrafast universal RNA-seq aligner, Bioinformatics 29 (2013) 15–21.

[21]

A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M.A. DePristo, The Genome Analysis Toolkit: a MapReduce framework for analyzing nextgeneration DNA sequencing data, Genome Res. 20 (2010) 1297–1303.

[22]

R.H. Liu, J.L. Meng, MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data, Hereditas (Beijing) 25 (2003) 317–321 (in Chinese with English abstract).

[23]
S.E. Lincoln, M.J. Daly, E.S. Lander, Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Mannual, 3rd ed., Whitehead Institute for Medical Research, Cambridge, MA, USA, 1993.
[24]

M. Maccaferri, N.S. Harris, S.O. Twardziok, R.K. Pasam, H. Gundlach, M. Spannagl, D. Ormanbekova, T. Lux, V.M. Prade, S.G. Milner, A. Himmelbach, M. Mascher, P. Bagnaresi, P. Faccioli, P. Cozzi, M. Lauria, B. Lazzari, A. Stella, A. Manconi, M. Gnocchi, M. Moscatelli, R. Avni, J. Deek, S. Biyiklioglu, E. Frascaroli, S. Corneti, S. Salvi, G. Sonnante, F. Desiderio, C. Marè, C. Crosatti, E. Mica, H. Özkan, B. Kilian, P. De Vita, D. Marone, R. Joukhadar, E. Mazzucotelli, D. Nigro, A. Gadaleta, S. Chao, J.D. Faris, A.T.O. Melo, M. Pumphrey, N. Pecchioni, L. Milanesi, K. Wiebe, J. Ens, R.P. MacLachlan, J.M. Clarke, A.G. Sharpe, C.S. Koh, K.Y.H. Liang, G.J. Taylor, R. Knox, H. Budak, A.M. Mastrangelo, S.S. Xu, N. Stein, I. Hale, A. Distelfeld, M.J. Hayden, R. Tuberosa, S. Walkowiak, K.F.X. Mayer, A. Ceriotti, C.J. Pozniak, L. Cattivelli, Durum wheat genome highlights past domestication signatures and future improvement targets, Nat. Genet. 51 (2019) 885–895.

[25]

R. Avni, M. Nave, O. Barad, K. Baruch, S.O. Twardziok, H. Gundlach, I. Hale, M. Mascher, M. Spannagl, K. Wiebe, K.W. Jordan, G. Golan, J. Deek, B. Ben-Zvi, G. Ben-Zvi, A. Himmelbach, R.P. MacLachlan, A.G. Sharpe, A. Fritz, R. Ben-David, H. Budak, T. Fahima, A. Korol, J.D. Faris, A. Hernandez, M.A. Mikel, A.A. Levy, B. Steffenson, M. Maccaferri, R. Tuberosa, L. Cattivelli, P. Faccioli, A. Ceriotti, K. Kashkush, M. Pourkheirandish, T. Komatsuda, T. Eilam, H. Sela, A. Sharon, N. Ohad, D.A. Chamovitz, K.F.X. Mayer, N. Stein, G. Ronen, Z. Peleg, C.J. Pozniak, E.D. Akhunov, A. Distelfeld, Wild emmer genome architecture and diversity elucidate wheat evolution and domestication, Science 357 (2017) 93–97.

[26]

S. Walkowiak, L. Gao, C. Monat, G. Haberer, M.T. Kassa, J. Brinton, R.H. Ramirez-Gonzalez, M.C. Kolodziej, E. Delorean, D. Thambugala, V. Klymiuk, B. Byrns, H. Gundlach, V. Bandi, J.N. Siri, K. Nilsen, C. Aquino, A. Himmelbach, D. Copetti, T. Ban, L. Venturini, M. Bevan, B. Clavijo, D.H. Koo, J. Ens, K. Wiebe, A. N’Diaye, A.K. Fritz, C. Gutwin, A. Fiebig, C. Fosker, B.X. Fu, G.G. Accinelli, K.A. Gardner, N. Fradgley, J. Gutierrez-Gonzalez, G. Halstead-Nussloch, M. Hatakeyama, C.S. Koh, J. Deek, A.C. Costamagna, P. Fobert, D. Heavens, H. Kanamori, K. Kawaura, F. Kobayashi, K. Krasileva, T. Kuo, N. McKenzie, K. Murata, Y. Nabeka, T. Paape, S. Padmarasu, L. Percival-Alwyn, S. Kagale, U. Scholz, J. Sese, P. Juliana, R. Singh, R. Shimizu-Inatsugi, D. Swarbreck, J. Cockram, H. Budak, T. Tameshige, T. Tanaka, H. Tsuji, J. Wright, J. Wu, B. Steuernagel, I. Small, S. Cloutier, G. Keeble-Gagnère, G. Muehlbauer, J. Tibbets, S. Nasuda, J. Melonek, P.J. Hucl, A.G. Sharpe, M. Clark, E. Legg, A. Bharti, P. Langridge, A. Hall, C. Uauy, M. Mascher, S.G. Krattinger, H. Handa, K.K. Shimizu, A. Distelfeld, K. Chalmers, B. Keller, K.F.X. Mayer, J. Poland, N. Stein, C.A. McCartney, M. Spannagl, T. Wicker, C.J. Pozniak, Multiple wheat genomes reveal global variation in modern breeding, Nature 588 (2020) 277–283.

[27]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 method, Methods 25 (2001) 402–408.

[28]

F.P. Wang, G.M. Zhan, G.R. Wei, L.L. Huang, Z.S. Kang, Q.M. Han, Population virulence analysis of Puccinia striiformis f. sp. tritici on two wheat cultivars in different zones in Longnan, J. Triticeae Crops 34 (2014) 1146–1152 (in Chinese with English abstract).

[29]

J. Huang, Q.Z. Jia, B. Zhang, Z.Y. Sun, M.M. Huang, S.L. Jin, Epidemic forecasting of the new strains G22–9 (CYR34) and G22–14 of Puccinia striiformis f. sp. tritici in wheat in Gansu Province, J. Plant Protect. 45 (2018) 101–108 (in Chinese with English abstract).

[30]

J.H. Wu, Q.L. Wang, X.M. Chen, M.J. Wang, J.M. Mu, X.N. Lv, L.L. Huang, D.J. Han, Z.S. Kang, Stripe rust resistance in wheat breeding lines developed for central Shaanxi, an overwintering region for Puccinia striiformis f. sp. tritici in China, Can. J. Plant Pathol. 38 (2016) 317–324.

[31]

S.Q. Cao, Z.Y. Sun, Z. Xu, W.J. Wang, Q.Z. Jia, S.Z. Yang, Y.L. Peng, J. Huang, B. Zhang, Evaluation resisrance of 331 Sichuan wheat cultivars (lines) to stripe rust and their utilization prospect in Southern Gansu Province, Plant Protect. 45 (2019) 135–158 (in Chinese with English abstract).

[32]

L. Huang, T.G. Liu, B. Liu, L. Gao, P.G. Luo, W.Q. Chen, Resistance evaluation of 197 Chinese wheat core germplasms to a new stripe rust race, CYR34, Plant Protect. 45 (2019) 148–154 (in Chinese with English abstract).

[33]

F.N. Guan, L. Long, F.J. Yao, X.Q. Wang, Q.T. Jiang, H.Y. Kang, Y.F. Jiang, W. Li, M. Deng, H. Li, G.Y. Chen, Evaluation of resistance to stripe rust and molecular detection of important known Yr gene(s) of 152 Chinese wheat landraces from the Huang-huai-hai, Sci. Agric. Sin. 53 (2020) 3629–3637 (in Chinese with English abstract).

[34]

L.C. Wang, X.R. Tang, J.H. Wu, C. Shen, M.F. Dai, Q.L. Wang, Q.D. Zeng, Z.S. Kang, Y.F. Wu, D.J. Han, Stripe rust resistance to a burgeoning Puccinia striiformis f. sp. tritici race CYR34 in current Chinese wheat cultivars for breeding and research, Euphytica 215 (2019) 68.

[35]

M.R. Xu, R.M. Lin, F.T. Wang, J. Feng, S.C. Xu, Evaluation of resistance to stripe rust and genetic diversity and detection of resistance genes in 103 wheat cultivars (lines), Sci. Agric. Sin. 53 (2020) 748–760 (in Chinese with English abstract).

[36]

F.M. Yuan, Y.J. Quan, D.M. Liu, Z.G. Chen, Molecular identification fo resistance to stripe rust in 197 wheat cultivars (lines) and germplasm resources from Qinghai Plateau, Southwest China J. Agric. Sci. 32 (2019) 1–13 (in Chinese with English abstract).

[37]

R. El-Bedewy, G. Röbbelen, Chromosomal location and change of dominance of a gene for resistance against yellow rust, Puccinia striiformis West., in wheat, Triticum aestivum L., Zeitschrift für Pflanzenzuchtung 89 (1982) 145–157.

[38]
R.A. McIntosh, J. Dubcovsky, W.J. Rogers, C. Morris, R. Appels, X.C. Xia, Catalogue of gene symbols for wheat: 2013-2014 supplement. 2014. http://maswheat.ucdavis.edu/CGSW/2013-2014_Supplement.pdf.
[39]

S. Jamil, R. Shahzad, S. Ahmad, R. Fatima, R. Zahid, M. Anwar, M.Z. Iqbal, X. Wang, Role of genetics, genomics, and breeding approaches to combat stripe rust of wheat, Front. Nutr. 7 (2020) 580715.

[40]

J. Feng, M. Wang, D.R. See, S. Chao, Y. Zheng, X. Chen, Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103, Phytopathology 108 (2018) 737–747.

[41]

X.G. Yin, X.W. Shang, B.S. Pang, J.R. Song, S.Q. Cao, J.C. Li, X.Y. Zhang, Molecular mapping of two novel stripe rust resistance genes YrTp1 and YrTp2 in A-3 derived from Triticum aestivum × Thinopyrum ponticum, Sci. Agric. Sin. 5 (2006) 483–490 (in Chinese with English abstract).

[42]

Y. Ren, S.R. Li, X.C. Xia, Q. Zhou, Y.J. He, Y.M. Wei, Y.L. Zheng, Z.H. He, Molecular mapping a recessive stripe rust resistance gene YrMY37 in Chinese wheat cultivar Mianmai 37, Mol Breed. 35 (2015) 97.

[43]

F. Lin, X.M. Chen, Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa, Theor. Appl. Genet. 114 (2007) 1277–1287.

[44]

R.S. Ren, M.N. Wang, X.M. Chen, Z.J. Zhang, Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527, Theor. Appl. Genet. 125 (2012) 847–857.

[45]

X.L. Zhou, M.N. Wang, X.M. Chen, Y. Lu, Z.S. Kang, J.X. Jing, Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759, Theor. Appl. Genet. 127 (2014) 935–945.

[46]

Y. Li, Y.C. Niu, X.M. Chen, Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers, Theor. Appl. Genet. 118 (2009) 339–346.

[47]

H.X. Xu, J. Zhang, P. Zhang, Y.M. Qie, Y.C. Niu, H.J. Li, P.T. Ma, Y.F. Xu, D.G. An, Development and validation of molecular markers closely linked to the wheat stipe rust resistance YrC591 for marker-assisted selection, Euphytica 198 (2014) 317–323.

[48]

Z.F. Li, T.C. Zheng, Z.H. He, G.Q. Li, S.C. Xu, X.P. Li, G.Y. Yang, R.P. Singh, X.C. Xia, Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B, Theor. Appl. Genet. 112 (2006) 1098–1103.

[49]

C. Lan, Y. Zhang, S.A. Herrera-Foessel, B.R. Basnet, J. Huerta-Espino, E.S. Lagudah, R.P. Singh, Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata, Theor. Appl. Genet. 128 (2015) 549–561.

[50]

H.Z. Zhang, J.Z. Xie, Y.X. Chen, X. Liu, Y. Wang, S.H. Yan, Z.S. Yang, H. Zhao, X.C. Wang, L.H. Jia, T.J. Cao, Z.Y. Liu, Mapping stripe rust resistance gene YrZM103 in wheat cultivar Zhengmai 103 by BSR-Seq, Acta Agron. Sin. 43 (2017) 1643–1649 (in Chinese with English abstract).

[51]

W. Dawit, K. Flath, W.E. Weber, E. Schumann, M.S. Röder, X.M. Chen, Postulation and mapping of seedling stripe rust resistance genes in Ethiopian bread wheat cultivars, J. Plant Pathol. 94 (2012) 403–409.

[52]

J. Mu, S. Huang, S. Liu, Q. Zeng, M. Dai, Q. Wang, J. Wu, S. Yu, Z. Kang, D. Han, Genetic architecture of wheat stripe rust resistance revealed by combining QTL mapping using SNP-Based genetic maps and bulked segregant analysis, Theor. Appl. Genet. 132 (2019) 443–455.

[53]

Q.H. Wu, Y.X. Chen, D. Li, Z.Z. Wang, Y. Zhang, C.G. Yuan, X.C. Wang, H. Zhao, T.J. CAO, Z.Y. LIU, Large scale detection of powdery mildew resistance genes in wheat via snp and bulked segregate analysis, Acta Agron. Sin. 44 (2018) 1–14 (in Chinese with English abstract).

[54]

P.P. Wu, J.Z. Xie, J.H. Hu, D. Qiu, Z.Y. Liu, J.T. Li, M.M. Li, H.J. Zhang, L. Yang, H.W. Liu, Y. Zhou, Z.J. Zhang, H.J. Li, Development of molecular markers linked to powdery mildew resistance gene Pm4b by combining SNP discovery from transcriptome sequencing data with bulked segregant analysis (BSR-Seq) in wheat, Front. Plant Sci. 9 (2018) 95.

[55]

Y. Wang, J. Xie, H. Zhang, B. Guo, S. Ning, Y. Chen, P. Lu, Q. Wu, M. Li, D. Zhang, G. Guo, Y. Zhang, D. Liu, S. Zou, J. Tang, H. Zhao, X. Wang, J. Li, W. Yang, T. Cao, G. Yin, Z. Liu, Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses, Theor. Appl. Genet. 130 (2017) 2191–2201.

[56]

Y. Wang, H. Zhang, J. Xie, B. Guo, Y. Chen, H. Zhang, P. Lu, Q. Wu, M. Li, D. Zhang, G. Guo, J. Yang, P. Zhang, Y. Zhang, X. Wang, H. Zhao, T. Cao, Z. Liu, Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17, Crop J. 6 (2018) 91–98.

[57]

C. Marchal, J. Zhang, P. Zhang, P. Fenwick, B. Steuernagel, N.M. Adamski, L. Boyd, R. McIntosh, B.B.H. Wulff, S. Berry, E. Lagudah, C. Uauy, BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust, Nat. Plants 4 (2018) 662–668.

[58]

W. Liu, M. Frick, R. Huel, C.L. Nykiforuk, X. Wang, D.A. Gaudet, F. Eudes, R.L. Conner, A. Kuzyk, Q. Chen, Z. Kang, A. Laroche, The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat, Mol. Plant 7 (2014) 1740–1755.

[59]

C.Z. Zhang, L. Huang, H.F. Zhang, Q.Q. Hao, B. Lyu, M.N. Wang, L. Epstein, M. Liu, C.L. Kou, J. Qi, F.J. Chen, M.K. Li, G. Gao, F. Ni, L.Q. Zhang, M. Hao, J.R. Wang, X.M. Chen, M.C. Luo, Y.L. Zheng, J.J. Wu, D.C. Liu, D.L. Fu, An ancestral NB-LRR with duplicated 3′UTRs confers stripe rust resistance in wheat and barley, Nat. Commun. 10 (2019) 4023.

[60]

H. Wang, S.H. Zou, Y.W. Li, F.Y. Lin, D.Z. Tang, An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat, Nat. Commun. 10 (2019) 1353.

[61]

V. Klymiuk, E. Yaniv, L. Huang, D. Raats, A. Fatiukha, S.S. Chen, L.H. Feng, Z. Frenkel, T. Krugman, G. Lidzbarsky, W. Chang, M.J. Jääskeläinen, C. Schudoma, L. Paulin, P. Laine, H. Bariana, H. Sela, K. Saleem, C.K. Sørensen, M.S. Hovmøller, A. Distelfeld, B. Chalhoub, J. Dubcovsky, A.B. Korol, A.H. Schulman, T. Fahima, Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family, Nat. Commun. 9 (2018) 3735.

[62]

D.L. Fu, C. Uauy, A. Distelfeld, A. Blechl, L. Epstein, X.M. Chen, H. Sela, T. Fahima, J. Dubcovsky A kinase-START gene confers temperature-dependent resistance to wheat stripe rust, Science 323 (2009) 1357 – 1360.

The Crop Journal
Pages 447-455
Cite this article:
Li Y, Lin R, Hu J, et al. Mapping of wheat stripe rust resistance gene Yr041133 by BSR-Seq analysis. The Crop Journal, 2022, 10(2): 447-455. https://doi.org/10.1016/j.cj.2021.06.009

198

Views

3

Downloads

11

Crossref

10

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 05 February 2021
Revised: 06 April 2021
Accepted: 05 July 2021
Published: 17 July 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return