AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

OsNPF5.16, a nitrate transporter gene with natural variation, is essential for rice growth and yield

Jie Wanga,bRenjing WancHaipeng NiebShaowu XuecZhongming Fanga,b,c( )
Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan 430415, Hubei, China
College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
Show Author Information

Abstract

Rice has a large number of nitrate or peptide transporter family (NPF) genes, but the effects of most members on rice growth and development are unknown. We report that OsNPF5.16, a nitrate transporter gene with natural variation in its promoter sequence, is essential for rice growth and yield. The promoter sequence showed various differences between indica and japonica cultivars, and higher expression of OsNPF5.16 was found in indica cultivars with higher plant weight and more tillers than japonica cultivars. OsNPF5.16 was highly expressed in roots, tiller basal parts, and leaf sheaths, and its protein was localized on the plasma membrane. In cRNA-injected Xenopus laevis oocytes, OsNPF5.16 transport of nitrate at high nitrate concentration depended on pH. Overexpression of OsNPF5.16 increased nitrate content and total nitrogen content in leaf sheath as well as biomass and tiller bud length in rice. Elevated expression of OsNPF5.16 increased rice tiller number and grain yield by regulating cytokinin levels. Inhibition of OsNPF5.16 expression showed the opposite effects. Regulating OsNPF5.16 expression has potential for improving rice grain yield.

References

[1]

X. Zhang, E.A. Davidson, D.L. Mauzerall, T.D. Searchinger, P. Dumas, Y. Shen, Managing nitrogen for sustainable development, Nature 528 (2015) 51-59.

[2]

A.G. Good, P.H. Beatty, Fertilizing nature: a tragedy of excess in the commons, PLoS Biol. 9 (2011) e1001124.

[3]

J.H. Guo, X.J. Liu, Y. Zhang, J.L. Shen, W.X. Han, W.F. Zhang, P. Christie, K.W.T. Goulding, P.M. Vitousek, F.S. Zhang, Significant acidification in major Chinese croplands, Science 327 (2010) 1008-1010.

[4]

H. Li, B. Hu, C. Chu, Nitrogen use efficiency in crops: lessons from Arabidopsis and rice, J. Exp. Bot. 68 (2017) 2477-2488.

[5]

X. Xia, X. Fan, J. Wei, H. Feng, H. Qu, D. Xie, A.J. Miller, G. Xu, Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport, J. Exp. Bot. 66 (2015) 317-331.

[6]

S. Li, Q. Qian, Z. Fu, D. Zeng, X. Meng, J. Kyozuka, M. Maekawa, X. Zhu, J. Zhang, J. Li, Y. Wang, Short panicle1 encodes a putative PTR family transporter and determines rice panicle size, Plant J. 58 (2009) 592-605.

[7]

S. Wang, A. Chen, K. Xie, X. Yang, Z. Luo, J. Chen, D. Zeng, Y. Ren, C. Yang, L. Wang, H. Feng, D.L. Lopez-Arredondo, L.R. Herrera-Estrella, G. Xu, Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 16649-16659.

[8]

W. Tang, J. Ye, X. Yao, P. Zhao, W. Xuan, Y. Tian, Y. Zhang, S. Xu, H. An, G. Chen, J. Yu, W. Wu, Y. Ge, X. Liu, J. Li, H. Zhang, Y. Zhao, B. Yang, X. Jiang, C. Peng, C. Zhou, W. Terzaghi, C. Wang, J. Wan, Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice, Nat. Commun. 10 (2019) 5279.

[9]

B. Hu, W. Wang, S. Ou, J. Tang, H. Li, R. Che, Z. Zhang, X. Chai, H. Wang, Y. Wang, C. Liang, L. Liu, Z. Piao, Q. Deng, K. Deng, C. Xu, Y. Liang, L. Zhang, L. Li, C. Chu, Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies, Nat. Genet. 47 (2015) 834-838.

[10]

J. Zhang, Y.X. Liu, N. Zhang, B. Hu, T. Jin, H. Xu, Y. Qin, P. Yan, X. Zhang, X. Guo, J. Hui, S. Cao, X. Wang, C. Wang, H. Wang, B. Qu, G. Fan, L. Yuan, R. Garrido-Oter, C. Chu, Y. Bai, NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice, Nat. Biotechnol. 37 (2019) 676-684.

[11]

W. Huang, H. Nie, F. Feng, J. Wang, K. Lu, Z. Fang, Altered expression of OsNPF7.1 and OsNPF7.4 differentially regulates tillering and grain yield in rice, Plant Sci. 283 (2019) 23-31.

[12]

R. Hu, D. Qiu, Y. Chen, A.J. Miller, X. Fan, X. Pan, M. Zhang, Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate supply, Front. Plant Sci. 7 (2016) 1529.

[13]

J. Wang, K. Lu, H. Nie, Q. Zeng, B. Wu, J. Qian, Z. Fang, Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield, Rice 11 (2018) 12.

[14]

X. Fan, D. Xie, J. Chen, H. Lu, Y. Xu, C. Ma, G. Xu, Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply, Plant Sci. 227 (2014) 1-11.

[15]

Z. Fang, G. Bai, W. Huang, Z. Wang, X. Wang, M. Zhang, The Rice Peptide Transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield, Front. Plant Sci. 8 (2017) 1338.

[16]

W. Huang, G. Bai, J. Wang, W. Zhu, Q. Zeng, K. Lu, S. Sun, Z. Fang, Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice, Front. Plant Sci. 9 (2018) 300.

[17]

C. Lin, S. Koh, G. Stacey, S. Yu, T. Lin, Y.F. Tsay, Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice, Plant Physiol. 122 (2000) 379-388.

[18]

Z. Fang, K. Xia, X. Yang, M.S. Grotemeyer, S. Meier, D. Rentsch, X. Xu, M. Zhang, Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice, Plant Biotechnol. J. 11 (2013) 446-458.

[19]

H. Zhao, W. Yao, Y. Ouyang, W. Yang, G. Wang, X. Lian, Y. Xing, L. Chen, W. Xie, RiceVarMap: a comprehensive database of rice genomic variations, Nucleic Acids Res. 43 (2015) D1018-D1022.

[20]

J. Wang, B. Wu, K. Lu, Q. Wei, J. Qian, Y. Chen, Z. Fang, The amino acid permease 5 (OsAAP5) regulates tiller number and grain yield in rice, Plant Physiol. 180 (2019) 1031-1045.

[21]

T. Kurusu, D. Nishikawa, Y. Yamazaki, M. Gotoh, M. Nakano, H. Hamada, T. Yamanaka, K. Iida, Y. Nakagawa, H. Saji, K. Shinozaki, H. Iida, K. Kuchitsu, Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells, BMC Plant Biol. 12 (2012) 11.

[22]

H. Cai, Y. Zhou, J. Xiao, X. Li, Q. Zhang, X. Lian, Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice, Plant Cell Rep. 28 (2009) 527-537.

[23]

H.H. Nour-Eldin, B.G. Hansen, M.H. Norholm, J.K. Jensen, B.A. Halkier, Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments, Nucleic Acids Res. 34 (2006) e122.

[24]

X. Li, Q. Qian, Z. Fu, Y. Wang, G. Xiong, D. Zeng, X. Wang, X. Liu, S. Teng, F. Hiroshi, M. Yuan, D. Luo, B. Han, J. Li, Control of tillering in rice, Nature 422 (2003) 618-621.

[25]

N. Huang, C.S. Chiang, N.M. Crawford, Y.F. Tsay, CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots, Plant Cell 8 (1996) 2183-2191.

[26]

K. Liu, C. Huang, Y.F. Tsay, CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake, Plant Cell 11 (1999) 865-874.

[27]

O. Leyser, Regulation of shoot branching by auxin, Trends Plant Sci. 8 (2003) 541-545.

[28]

B.J. Ferguson, C.A. Beveridge, Roles for auxin, cytokinin, and strigolactone in regulating shoot branching, Plant Physiol. 149 (2009) 1929-1944.

[29]

V. Gomez-Roldan, S. Fermas, P.B. Brewer, V. Puech-Pagès, E.A. Dun, J.P. Pillot, F. Letisse, R. Matusova, S. Danoun, J.C. Portais, H. Bouwmeester, G. Bécard, C.A. Beveridge, C. Rameau, S.F. Rochange, Strigolactone inhibition of shoot branching, Nature 455 (2008) 189-194.

[30]

M. Umehara, A. Hanada, S. Yoshida, K. Akiyama, T. Arite, N. Takeda-Kamiya, H. Magome, Y. Kamiya, K. Shirasu, K. Yoneyama, J. Kyozuka, S. Yamaguchi, Inhibition of shoot branching by new terpenoid plant hormones, Nature 455 (2008) 195-200.

[31]

K. Lu, B. Wu, J. Wang, W. Zhu, H. Nie, J. Qian, W. Huang, Z. Fang, Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice, Plant Biotechnol. J. 16 (2018) 1710-1722.

[32]

Z. Fang, B. Wu, Y. Ji, The amino acid transporter OsAAP4 contributes to rice tillering and grain yield by regulating neutral amino acid allocation through two splicing variants, Rice 14 (2021) 2.

[33]

B. Peng, H. Kong, Y. Li, L. Wang, M. Zhong, L. Sun, G. Gao, Q. Zhang, L. Luo, G. Wang, W. Xie, J. Chen, W. Yao, Y. Peng, L. Lei, X. Lian, J. Xiao, C. Xu, X. Li, Y. He, OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice, Nat. Commun. 5 (2014) 4847.

[34]

K.H. Liu, Y.F. Tsay, Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation, EMBO J. 22 (2003) 1005-1013.

[35]

A.D.M. Glass, J.E. Shaff, L.V. Kochian, Studies of the uptake of nitrate in barley: Ⅳ. Electrophysiology, Plant Physiol. 99 (1992) 456-463.

[36]

N.M. Crawford, Nitrate: nutrient and signal for plant growth, Plant Cell 7 (1995) 859-868.

[37]

Y.F. Tsay, C.C. Chiu, C.B. Tsai, C.H. Ho, P.K. Hsu, Nitrate transporters and peptide transporters, FEBS Lett. 581 (2007) 2290-2300.

[38]

R. Wang, D. Liu, N.M. Crawford, The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 15134-15139.

[39]

S. Leran, B. Garg, Y. Boursiac, C. Corratge-Faillie, C. Brachet, P. Tillard, A. Gojon, B. Lacombe, AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo, Sci. Rep. 5 (2015) 7962.

[40]

Y. Li, J. Ouyang, Y. Wang, R. Hu, K. Xia, J. Duan, Y. Wang, Y.F. Tsay, M. Zhang, Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development, Sci. Rep. 5 (2015) 9635.

[41]

A. Hayward, P. Stirnberg, C. Beveridge, O. Leyser, Interactions between auxin and strigolactone in shoot branching control, Plant Physiol. 151 (2009) 400-412.

[42]

R. Wang, J. Qian, Z. Fang, J. Tang, Transcriptomic and physiological analyses of rice seedlings under different nitrogen supplies provide insight into the regulation involved in axillary bud outgrowth, BMC Plant Biol. 20 (2020) 197.

[43]

Y. Ji, W. Huang, B. Wu, Z. Fang, X. Wang, The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa, J. Exp. Bot. 71 (2020) 4763-4777.

[44]

W. Liu, D. Kong, X. Gu, H. Gao, J. Wang, M. Xia, Q. Gao, L. Tian, Z. Xu, F. Bao, Y. Hu, N. Ye, Z. Pei, Y. He, Cytokinins can act as suppressors of nitric oxide in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 1548-1553.

The Crop Journal
Pages 397-406
Cite this article:
Wang J, Wan R, Nie H, et al. OsNPF5.16, a nitrate transporter gene with natural variation, is essential for rice growth and yield. The Crop Journal, 2022, 10(2): 397-406. https://doi.org/10.1016/j.cj.2021.08.005

286

Views

5

Downloads

15

Crossref

12

Web of Science

15

Scopus

5

CSCD

Altmetrics

Received: 27 February 2021
Revised: 05 June 2021
Accepted: 20 August 2021
Published: 26 August 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return