AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A lignified-layer bridge controlled by a single recessive gene is associated with high pod-shatter resistance in Brassica napus L.

Wen Chua,b,cJia LiuaHongtao ChengaChao LiaLi FuaWenxiang WangaHui WangaMengyu HaoaDesheng MeiaKede LiubQiong Hua,c( )
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
Show Author Information

Abstract

Pod shattering causes severe yield loss in rapeseed (Brassica napus L.) under modern agricultural practice. Identification of highly shatter-resistant germplasm is desirable for the development of rapeseed cultivars for mechanical harvesting. In the present study, an elite line OR88 with strong shatter resistance and a lignified-layer bridge (LLB) structure was identified. The LLB structure was unique to OR88 and co-segregated with high pod-shatter resistance. The LLB structure is differentiated at stage 12 of gynoecium development without any gynoecium defects. Genetic analysis showed that LLB is controlled by a single recessive gene. By BSA-Seq and map-based cloning, the resistance gene location was delimited to a 0.688 Mb region on chromosome C09. Transcriptome analysis suggested BnTCP8.C09 as the gene responsible for LLB. The expression of BnTCP.C09 was strongly downregulated in OR88, suppressing cell proliferation in the pod valve margin. KASP markers linked to the candidate gene were developed. This pod shatter-resistant line could be used in rapeseed breeding programs by direct transfer of the gene with the assistance of the DNA markers.

References

[1]

M. Mittelbach, S. Gangl, Long storage stability of biodiesel made from rapeseed and used frying oil, J. Am. Oil Chem. Soc. 78 (2001) 573–577.

[2]

A. Cavalieri, K.N. Harker, L.M. Hall, C.J. Willenborg, T.A. Haile, S.J. Shirtliffe, R.H. Gulden, Evaluation of the causes of on-farm harvest losses in canola in the northern great plains, Crop Sci. 56 (2016) 2005–2015.

[3]

Y. Dong, Y.Z. Wang, Seed shattering: from models to crops, Front. Plant Sci. 6 (2015) 476.

[4]

P. Ballester, C. Ferrándiz, Shattering fruits: variations on a dehiscent theme, Curr. Opin. Plant Biol. 35 (2017) 68–75.

[5]

J.I. Reyes-Olalde, V.M. Zuñiga-Mayo, R.A. Chávez Montes, N. Marsch-Martínez, S. de Folter, Inside the gynoecium: at the carpel margin, Trends Plant Sci. 18 (2013) 644–655.

[6]

S.J. Liljegren, G.S. Ditta, Y. Eshed, B. Savidge, J.L. Bowman, M.F. Yanofsky, SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis, Nature 404 (2000) 766–770.

[7]

S.J. Liljegren, A.H.K. Roeder, S.A. Kempin, K. Gremski, L. Østergaard, S. Guimil, D. K. Reyes, M.F. Yanofsky, Control of fruit patterning in Arabidopsis by INDEHISCENT, Cell 116 (2004) 843–853.

[8]

S. Rajani, V. Sundaresan, The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence, Curr. Biol. 11 (2001) 1914–1922.

[9]

Q. Gu, C. Ferrándiz, M.F. Yanofsky, R. Martienssen, The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development, Development 125 (1998) 1509–1517.

[10]

C. Ferrá ndiz, S.J. Liljegren, M.F. Yanofsky, Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development, Science 289 (2000) 436–438.

[11]

A.H.K. Roeder, C. Ferrándiz, M.F. Yanofsky, The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit, Curr. Biol. 13 (2003) 1630–1635.

[12]

C. Ferrandiz, C. Fourquin, Role of the FUL-SHP network in the evolution of fruit morphology and function, J. Exp. Bot. 65 (2014) 4505–4513.

[13]

N. Mitsuda, M. Ohme-Takagi, NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity, Plant J. 56 (2008) 768–778.

[14]

M. Ogawa, P. Kay, S. Wilson, S.M. Swain, ARABIDOPSIS Dehiscence Zone Polygalacturonase1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis, Plant Cell 21 (2009) 216–233.

[15]

K. Sorefan, T. Girin, S.J. Liljegren, K. Ljung, P. Robles, C.S. Galván-Ampudia, R. Offringa, J. Friml, M.F. Yanofsky, L. Østergaard, A regulated auxin minimum is required for seed dispersal in Arabidopsis, Nature 459 (7246) (2009) 583–586.

[16]

N. Arnaud, T. Girin, K. Sorefan, S. Fuentes, T.A. Wood, T. Lawrenson, R. Sablowski, L. Ostergaard, Gibberellins control fruit patterning in Arabidopsis thaliana, Genes Dev. 24 (2010) 2127–2132.

[17]

K. van Gelderen, M. van Rongen, A. Liu, A. Otten, R. Offringa, An INDEHISCENT-controlled auxin response specifies the separation layer in early Arabidopsis fruit, Mol. Plant 9 (2016) 857–869.

[18]

J. Braatz, H.J. Harloff, N. Emrani, C. Elisha, L. Heepe, S.N. Gorb, C. Jung, The effect of INDEHISCENT point mutations on silique shatter resistance in oilseed rape (Brassica napus), Theor. Appl. Genet. 131 (2018) 959–971.

[19]

J. Braatz, H.J. Harloff, C. Jung, EMS-induced point mutations in ALCATRAZ homoeologs increase silique shatter resistance of oilseed rape (Brassica napus), Euphytica 214 (2018) 29.

[20]

Y. Zhai, S. Cai, L. Hu, Y. Yang, O. Amoo, C. Fan, Y. Zhou, CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L., Theor. Appl. Genet. 132 (2019) 2111–2123.

[21]

Y. Dong, X. Yang, J. Liu, B.H. Wang, B.L. Liu, Y.Z. Wang, Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean, Nat. Commun. 5 (2014) 3352.

[22]

Z. Hu, H. Yang, L. Zhang, X. Wang, G. Liu, H. Wang, W. Hua, A large replumvalve joint area is associated with increased resistance to pod shattering in rapeseed, J. Plant. Res. 128 (2015) 813–819.

[23]

T. Lawrenson, O. Shorinola, N. Stacey, C. Li, L. Østergaard, N. Patron, C. Uauy, W. Harwood, Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease, Genome Biol. 16 (2015) 258.

[24]

T. Girin, P. Stephenson, C.M. Goldsack, S.A. Kempin, A. Perez, N. Pires, P.A. Sparrow, T.A. Wood, M.F. Yanofsky, L. Ostergaard, Brassicaceae INDEHISCENT genes specify valve margin cell fate and repress replum formation, Plant J. 63 (2010) 329–338.

[25]

P. Stephenson, N. Stacey, M. Brüser, N. Pullen, M. Ilyas, C. O'Neill, R. Wells, L. Østergaard, The power of model-to-crop translation illustrated by reducing seed loss from pod shatter in oilseed rape, Plant Reprod. 32 (2019) 331–340.

[26]

H. Raman, R. Raman, A. Kilian, F. Detering, J. Carling, N. Coombes, S. Diffey, G. Kadkol, D. Edwards, M. McCully, P. Ruperao, I.A.P. Parkin, J. Batley, D.J. Luckett, N. Wratten, Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus, PLoS ONE 9 (2014) e101673.

[27]

J. Liu, J. Wang, H. Wang, W. Wang, R. Zhou, D. Mei, H. Cheng, J. Yang, H. Raman, Q. Hu, Multigenic control of pod shattering resistance in Chinese rapeseed germplasm revealed by genome-wide association and linkage analyses, Front. Plant Sci. 7 (2016) 1058.

[28]

J. Liu, R. Zhou, W. Wang, H. Wang, Y. Qiu, R. Raman, D. Mei, H. Raman, Q. Hu, A copia-like retrotransposon insertion in the upstream region of the SHATTERPROOF1 gene, BnSHP1.A9, is associated with quantitative variation in pod shattering resistance in oilseed rape, J. Exp. Bot. 71 (2020) 5402–5413.

[29]

D.M. Bruce, R.N. Hobson, C.L. Morgan, R.D. Child, Threshability of shatterresistant seed pods in oilseed rape, J. Agric. Engng. Res. 80 (2001) 343–350.

[30]

P. Peng, Y. Li, D. Mei, D. Liu, L. Fu, H. Wang, S. Sang, Y. Chen, Q. Hu, Optimization and experiment of assessment method for pod shatter resistance in Brassica napus L., Trans. Chin. Soc. Agric. Eng. 29 (2013) 19–25.

[31]

F.W. Heyn, Transfer of the restorer genes from Raphanus to cytoplasmic malesterile Brassica napus, Eucarpia Cruciferae Newslett. 1 (1976) 15–16.

[32]

G.G. Brown, N. Formanová, H. Jin, R. Wargachuk, C. Dendy, P. Patil, M. Laforest, J. Zhang, W.Y. Cheung, B.S. Landry, The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats, Plant J. 35 (2003) 262–272.

[33]

C. Primard-Brisset, J.P. Poupard, R. Horvais, F. Eber, G. Pelletier, M. Renard, R. Delourme, A new recombined double low restorer line for the Ogu-INRA cms in rapeseed (Brassica napus L.), Theor. Appl. Genet. 111 (2005) 736–746.

[34]
SAS Institute Inc., Base SAS 9. 1. 3 Procedures Guide, Second Edition, Volumes 1, 2, 3, and 4, SAS Institute Inc., Cary, NC, USA, 2006.
[35]

R. Raman, Y. Qiu, N. Coombes, J. Song, A. Kilian, H. Raman, Molecular diversity analysis and genetic mapping of pod shatter resistance loci in Brassica carinata L., Front. Plant Sci. 8 (2017) 1765.

[36]

D.R. Smyth, J.L. Bowman, E.M. Meyerowitz, Early flower development in Arabidopsis, Plant Cell 2 (1990) 755–767.

[37]

B. Chalhoub, F. Denoeud, S. Liu, I.A.P. Parkin, H. Tang, X. Wang, J. Chiquet, H. Belcram, C. Tong, B. Samans, M. Corréa, C. Da Silva, J. Just, C. Falentin, C.S. Koh, I. Le Clainche, M. Bernard, P. Bento, B. Noel, K. Labadie, A. Alberti, M. Charles, D. Arnaud, H. Guo, C. Daviaud, S. Alamery, K. Jabbari, M. Zhao, P.P. Edger, H. Chelaifa, D. Tack, G. Lassalle, I. Mestiri, N. Schnel, M.C. Le Paslier, G. Fan, V. Renault, P.E. Bayer, A.A. Golicz, S. Manoli, T.H. Lee, V.H.D. Thi, S. Chalabi, Q. Hu, C. Fan, R. Tollenaere, Y. Lu, C. Battail, J. Shen, C.H.D. Sidebottom, X. Wang, A. Canaguier, A. Chauveau, A. Bérard, G. Deniot, M. Guan, Z. Liu, F. Sun, Y.P. Lim, E. Lyons, C.D. Town, I. Bancroft, X. Wang, J. Meng, J. Ma, J.C. Pires, G.J. King, D. Brunel, R. Delourme, M. Renard, J.M. Aury, K.L. Adams, J. Batley, R.J. Snowdon, J. Tost, D. Edwards, Y. Zhou, W. Hua, A.G. Sharpe, A.H. Paterson, C. Guan, P. Wincker, Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome, Science 345 (2014) 950–953.

[38]

H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics 25 (2009) 1754–1760.

[39]

A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M.A. DePristo, The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res. 20 (2010) 1297–1303.

[40]

H. Takagi, A. Abe, K. Yoshida, S. Kosugi, S. Natsume, C. Mitsuoka, A. Uemura, H. Utsushi, M. Tamiru, S. Takuno, H. Innan, L.M. Cano, S. Kamoun, R. Terauchi, QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations, Plant J. 74 (2013) 174–183.

[41]

M. Trick, N.M. Adamski, S.G. Mugford, C.C. Jiang, M. Febrer, C. Uauy, Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat, BMC Plant Biol. 12 (2012) 14.

[42]

P. Stam, Construction of integrated genetic linkage maps by means of a new computer package: JoinMap, Plant J. 3 (1993) 5.

[43]

K. Shiroguchi, T.Z. Jia, P.A. Sims, X.S. Xie, Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized singlemolecule barcodes, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 1347–1352.

[44]

T. Smith, A. Heger, I. Sudbery, UMI-tools: Modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy, Genome Res. 27 (2017) 491–499.

[45]

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, S.L. Salzberg, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol. 14 (2013) R36.

[46]

C. Trapnell, B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, S.L. Salzberg, B.J. Wold, L. Pachter, Transcript assembly and quantification by RNASeq reveals unannotated transcripts and isoform switching during cell differentiation, Nat. Biotechnol. 28 (2010) 511–515.

[47]

M.D. Young, M.J. Wakefield, G.K. Smyth, A. Oshlack, Gene ontology analysis for RNA-seq: accounting for selection bias, Genome Biol. 11 (2010) R14.

[48]

S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870–1874.

[49]

M. Lescot, P. Déhais, G. Thijs, K. Marchal, Y. Moreau, Y. van de Peer, P. Rouzé, S. Rombauts, PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences, Nucleic Acids Res. 30 (2002) 325–327.

[50]

B. Hu, J. Jin, A.Y. Guo, H. Zhang, J. Luo, G. Gao, GSDS 2.0: an upgraded gene feature visualization server, Bioinformatics 31 (2015) 1296–1297.

[51]

K. Shirasawa, H. Hirakawa, N. Fukino, H. Kitashiba, S. Isobe, Genome sequence and analysis of a Japanese radish (Raphanus sativus) cultivar named 'Sakurajima Daikon' possessing giant root, DNA Res. 27 (2020) dsaa010.

[52]

J.M. Song, Z. Guan, J. Hu, C. Guo, Z. Yang, S. Wang, D. Liu, B. Wang, S. Lu, R. Zhou, W.Z. Xie, Y. Cheng, Y. Zhang, K. Liu, Q.Y. Yang, L.L. Chen, L. Guo, Eight highquality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus, Nat. Plants 6 (2020) 34–45.

[53]

L.E. Lucero, N.G. Uberti-Manassero, A.L. Arce, F. Colombatti, S.G. Alemano, D.H. Gonzalez, TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis, Plant J. 84 (2015) 267–282.

[54]

J.M. Davière, M. Wild, T. Regnault, N. Baumberger, H. Eisler, P. Genschik, P. Achard, Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height, Curr. Biol. 24 (2014) 1923–1928.

[55]

M. Martín-Trillo, P. Cubas, TCP genes: a family snapshot ten years later, Trends Plant Sci. 15 (2010) 31–39.

The Crop Journal
Pages 638-646
Cite this article:
Chu W, Liu J, Cheng H, et al. A lignified-layer bridge controlled by a single recessive gene is associated with high pod-shatter resistance in Brassica napus L.. The Crop Journal, 2022, 10(3): 638-646. https://doi.org/10.1016/j.cj.2021.09.005

291

Views

4

Downloads

11

Crossref

10

Web of Science

10

Scopus

2

CSCD

Altmetrics

Received: 22 June 2021
Revised: 17 August 2021
Accepted: 08 September 2021
Published: 02 November 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return