AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Improving the resistance of the rice PTGMS line Feng39S by pyramiding blast, bacterial blight, and brown planthopper resistance genes

Dabing YangLizhong XiongTongmin MouJiaming Mi( )
National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei, China
Show Author Information

Abstract

Knowledge of rice (Oryza sativa L.) genes and various DNA markers can be used in genomic breeding programs aimed at developing improved elite rice cultivars. We used an efficient genomic breeding approach to pyramid four resistance genes (Pi2, Xa23, Bph14, and Bph15) in the popular photoperiod- and thermo-sensitive genic male sterile (PTGMS) rice line Feng39S. We performed foreground selection for the target genes, followed by recombinant selection and background selection. This process reduced the sizes of the genomic segments harboring the target genes (566.8 kb for Pi2, 1143.9 kb for Xa23, 774.7 kb for Bph14, and 1574.9 kb for Bph15) and accelerated the recovery of the recurrent parent genome to proportions ranging from 98.77% to 99.16%, thus resulting in four near-isogenic lines. To assemble the four resistance genes in Feng39S, we performed a double-way cross combined with foreground and background selection to generate two improved lines of Feng39S (Pi2 + Xa23 + Bph14 + Bph15) with a recurrent parent genome recovery of 98.98%. The two lines showed agronomic performance, grain quality, and fertility–sterility transition characteristics similar to those of the original Feng39S line. The newly developed PTGMS lines and corresponding hybrid combinations were resistant to various field blast isolates and seven representative isolates of bacterial blight. At the seedling stage, the lines also showed resistance against brown planthopper. This study provides an efficient and accurate genomic breeding approach for introducing desirable traits into PTGMS lines.

References

[1]

G.S. Khush, What it will take to feed 5.0 billion rice consumers in 2030, Plant Mol. Biol. 59 (2005) 1-6.

[2]

L.P. Yuan, Development of hybrid rice to ensure food security, Rice Sci. 21 (2014) 1-2.

[3]

T.P. Mou, The research progress and prospects of two-line hybrid rice in China, Chin. Sci. Bull. 61 (2016) 3761-3769.

[4]

L.P. Yuan, Progress in super-hybrid rice breeding, Crop J. 5 (2017) 100-102.

[5]

P. Skamnioti, S.J. Gurr, Against the grain: safeguarding rice from rice blast disease, Trends Biotechnol. 27 (2009) 141-150.

[6]

R.M. Sundaram, S. Chatterjee, R. Oliva, G.S. Laha, C.V. Cruz, J.E. Leach, R.V. Sonti, Update on bacterial blight of rice: fourth international conference on bacterial blight, Rice 7 (2014) 12.

[7]

Y. Ling, Z. Weilin, Genetic and biochemical mechanisms of rice resistance to planthopper, Plant Cell Rep. 35 (2016) 1559-1572.

[8]

Q. Zhang, Strategies for developing green super rice, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 16402-16409.

[9]

S. Yu, J. Ali, C. Zhang, Z. Li, Q. Zhang, Genomic breeding of Green Super Rice varieties and their deployment in Asia and Africa, Theor. Appl. Genet. 133 (2020) 1427-1442.

[10]

W. Li, M. Chern, J. Yin, J. Wang, X. Chen, Recent advances in broad-spectrum resistance to the rice blast disease, Curr. Opin. Plant Biol. 50 (2019) 114-120.

[11]

Z.Y. Ji, C.L. Wang, K.J. Zhao, Rice routes of countering Xanthomonas oryzae, Int. J. Mol. Sci. 19 (2018) 3008.

[12]

X.F. Chen, P.C. Liu, L. Mei, X.L. He, L. Chen, H. Liu, S.R. Shen, Z.D. Ji, X.X. Zheng, Y.C. Zhang, Z.Y. Gao, D.L. Zeng, Q. Qian, B.J. Ma, Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice, Plant Commun. 2 (2021) 100143.

[13]

B. Du, R.Z. Chen, J.P. Guo, G.C. He, Current understanding of the genomic, genetic, and molecular control of insect resistance in rice, Mol. Breed. 40 (2020) 24.

[14]

H. Jiang, Y. Feng, L. Bao, X. Li, G. Gao, Q. Zhang, J. Xiao, C. Xu, Y. He, Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding, Mol. Breed. 30 (2012) 1679-1688.

[15]

J.F. Jiang, T.M. Mou, H.H. Yu, F.S. Zhou, Molecular breeding of thermo-sensitive genic male sterile (TGMS) lines of rice for blast resistance using Pi2 gene, Rice 8 (2015) 11.

[16]

J.F. Jiang, D.B. Yang, J. Ali, T.M. Mou, Molecular marker-assisted pyramiding of broad-spectrum disease resistance genes, Pi2 and Xa23, into GZ63-4S, an elite thermo-sensitive genic male-sterile line in rice, Mol. Breed. 35 (2015) 83.

[17]

J.M. Mi, D.B. Yang, Y. Chen, J.F. Jiang, H.P. Mou, J.B. Huang, Y.D. Ouyang, T.M. Mou, Accelerated molecular breeding of a novel P/TGMS line with broad-spectrum resistance to rice blast and bacterial blight in two-line hybrid rice, Rice 11 (2018) 11.

[18]

D. Yang, J.H. Tang, D. Yang, Y. Chen, J. Ali, T.M. Mou, Improving rice blast resistance of Feng39S through molecular marker-assisted backcrossing, Rice 12 (2019) 70.

[19]

S.G. Wang, W. Liu, D.B. Lu, Z.H. Lu, X.F. Wang, J. Xue, X.Y. He, Distribution of bacterial blight resistance genes in the main cultivars and application of Xa23 in rice breeding, Front. Plant Sci. 11 (2020) 555228.

[20]

J. Hu, M. Cheng, G. Gao, Q. Zhang, J. Xiao, Y. He, Pyramiding and evaluation of three dominant brown planthopper resistance genes in the elite indica rice 9311 and its hybrids, Pest Manag. Sci. 69 (2013) 802-808.

[21]

H.B. Wang, S.T. Ye, T.M. Mou, Molecular breeding of rice restorer lines and hybrids for brown planthopper (BPH) resistance using the Bph14 and Bph15 genes, Rice 9 (2016) 53.

[22]

X. Zhou, G. Jiang, L. Yang, L. Qiu, P. He, C. Nong, Y. Wang, Y. He, Y. Xing, Gene diagnosis and targeted breeding for blast-resistant Kongyu 131 without changing regional adaptability, J. Genet. Genomics 45 (2018) 539-547.

[23]

R.A. Wing, M.D. Purugganan, Q.F. Zhang, The rice genome revolution: from an ancient grain to Green Super Rice, Nat. Rev. Genet. 19 (2018) 505-517.

[24]

H.B. Wang, Y. Gao, F.M. Mao, L.Z. Xiong, T.M. Mou, Directional upgrading of brown planthopper resistance in an elite rice cultivar by precise introgression of two resistance genes using genomics-based breeding, Plant Sci. 288 (2019) 110211.

[25]

Y.Q. He, J. Yang, C.G. Xu, Z.G. Zhang, Q. Zhang, Genetic bases of instability of male sterility and fertility reversibility in photoperiod-sensitive genic male-sterile rice, Theor. Appl. Genet. 99 (1999) 683-693.

[26]

A.L. Tao, H.L. Zeng, Y.M. Zhang, G.S. Xie, F.L. Qin, Y.L. Zheng, D.P. Zhang, Genetic analysis of the low critical sterility temperature point in photoperiod-thermo sensitive genic male sterile rice, Acta Genet. Sin. 30 (2003) 40-48 (in Chinese with English abstract).

[27]

T.M. Mou, J.F. Jiang, Y. Chen, S.T. Ye, D.B. Yang, C.H. Li, Y. Sun, Y. Chen, Breeding of indica PTGMS line Hua1201S with resistance to rice blast, Hybrid Rice 32 (2017) 5-11 (in Chinese with English abstract).

[28]

D.J. Mackill, M.J. Bonman, Inheritance of blast resistance in near-isogenic lines of rice, Phytopathology 82 (1992) 746-749.

[29]

B. Huang, J.Y. Xu, M.S. Hou, J. Ali, T.M. Mou, Introgression of bacterial blight resistance genes Xa7, Xa21, Xa22 and Xa23 into hybrid rice restorer lines by molecular marker-assisted selection, Euphytica 187 (2012) 449-459.

[30]

Q. Zhang, C.L. Wang, K.J. Zhao, W.C. Yang, F. Qiao, Y.L. Zhou, Q.X. Jiang, G.C. Liu, Development of near-isogenic line CBB23 with a new resistance gene to bacterial blight in rice and its application, Chin. J. Rice Sci. 16 (2002) 206-210 (in Chinese with English abstract).

[31]

C.J. Yang, Z.H. Yang, J.F. Hu, G.C. He, L.H. Shu, Study on the brown planthopper resistance in introgressive lines from wild rice, Acta Phytophy. Sin. 26 (1999) 197-202 (in Chinese with English abstract).

[32]

J. Mi, G. Li, J. Huang, H. Yu, F. Zhou, Q. Zhang, Y. Ouyang, T. Mou, Stacking S5-n and f5-n to overcome sterility in indica-japonica hybrid rice, Theor. Appl. Genet. 129 (2016) 563-575.

[33]

H.H. Yu, W.B. Xie, J. Li, F.S. Zhou, Q.F. Zhang, A whole-genome SNP array (RICE6K) for genomic breeding in rice, Plant Biotechnol. J. 12 (2014) 28-37.

[34]
T.C. Gu, R.X. Tao, X.Y. Zhu, X.J. Hu, B. Zeng, S.H. Yang, J. Wang, D.H. Lu, S.Q. Wu, X.L. Guo, X.W. Yang, Q.W. Li, Y.F. Liu, F.H. Xiao, Z.N. He, J.Z. Chen, H.L. Gao, J.S. Tian, W.X. Wang, D.B. Wang, H.B. Han, J. Jiang, H. Dong, J.F. Zhao, Technical specification for identification and evaluation of blast resistance in rice variety regional test, 2014, http://hbba.sacinfo.org.cn/stdList?key=NY/T%202646-2014 (Accessed on October 17, 2014).
[35]

J.M. Bonman, D.T. Vergel, M.M. Khin, Physiologic specialization of Pyricularia oryzae in the Philippines, Plant Dis. 70 (1986) 767-769.

[36]
IRRI, Standard Evaluation System for Rice, 5th Edition, International Rice Research Institute, Los Banos, Philippines, 2013.
[37]

H.E. Kauffman, A. Reddy, S.P.Y. Hsieh, S.D. Merca, An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae, Plant Dis. Rep. 57 (1973) 537-541.

[38]

H. Liu, W. Yang, B. Hu, F. Liu, Virulence analysis and race classification of Xanthomonas oryzae pv. oryzae in China, J. Phytopathol. 155 (2007) 129-135.

[39]
Z.X. Sun, Y.H. Yu, N. Chen, H.M. Si, Y.F. Shi, X.H. Wei, G.C. Hu, L. Xu, Fertility evaluation protocol of environmental sensitive genic male sterile (EGMS) line of rice, 2006, <http://hbba.sacinfo.org.cn/stdList?key=NY/T%201215-2006> (Accessed on December 6, 2006).
[40]
S.S. Virmani, Z.X. Sun, T.M. Mou, J. Ali, C.X. Mao, Two-line Hybrid Rice Breeding Manual, International Rice Research Institute, Los Banos, Philippines, 2003.
[41]
P.S. Hu, N. Chen, Z.W. Zhu, B.W. Duan, J. Min, M.X. Chen, Cooking rice variety quality, 2013, http://hbba.sacinfo.org.cn/stdList?key=NY/T%20593-2013 (Accessed on May 20, 2013).
[42]

Y. Xiao, J. Li, J. Yu, Q. Meng, X. Deng, Z. Yi, G. Xiao, Improvement of bacterial blight and brown planthopper resistance in an elite restorer line Huazhan of Oryza, Field Crops Res. 186 (2016) 47-57.

[43]

C. He, Y. Xiao, J. Yu, J. Li, Q. Meng, X. Qing, G. Xiao, Pyramiding Xa21, Bph14, and Bph15 genes into the elite restorer line Yuehui 9113 increases resistance to bacterial blight and the brown planthopper in rice, Crop Prot. 115 (2019) 31-39.

[44]

M.M. Yu, Z.Y. Dai, C.H. Pan, X.J. Chen, L. Yu, X.X. Zhang, Y.H. Li, N. Xiao, H.B. Gong, S.L. Sheng, X.B. Pan, H.X. Zhang, A.H. Li, Resistance spectrum difference between two broad-spectrum blast resistance genes, Pigm and Pi2, and their interaction effect on Pi1, Acta Agron. Sin. 39 (2013) 1927-1934 (in Chinese with English abstract).

[45]

V.K. Singh, A. Singh, S.P. Singh, R.K. Ellur, V. Choudhary, S. Sarkel, D. Singh, S.G. Krishnan, M. Nagarajan, K.K. Vinod, U.D. Singh, R. Rathore, S.K. Prashanthi, P.K. Agrawal, J.C. Bhatt, T. Mohapatra, K.V. Prabhu, A.K. Singh, Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding, Field Crops Res. 128 (2012) 8-16.

[46]

R.K. Ellur, A. Khanna, A. Yadav, S. Pathania, H. Rajashekara, V.K. Singh, S. Gopala Krishnan, P.K. Bhowmick, M. Nagarajan, K.K. Vinod, G. Prakash, K.K. Mondal, N.K. Singh, K. Vinod Prabhu, A.K. Singh, Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding, Plant Sci. 242 (2016) 330-341.

[47]

B. Divya, S. Robin, R. Rabindran, S. Senthil, M. Raveendran, A.J. Joel, Marker assisted backcross breeding approach to improve blast resistance in Indian rice (Oryza sativa) variety ADT43, Euphytica 200 (2014) 61-77.

[48]

Y. Han, C. Wu, L. Yang, D. Zhang, Y. Xiao, Z. Wang, Resistance to Nilaparvata lugens in rice lines introgressed with the resistance genes Bph14 and Bph15 and related resistance types, PLoS ONE 13 (2018) e0198630.

[49]

Q.H. Chen, G. Zeng, M. Hao, H.Y. Jiang, Y.H. Xiao, Improvement of rice blast and brown planthopper resistance of PTGMS line C815S in two-line hybrid rice through marker-assisted selection, Mol. Breed. 40 (2020) 21.

[50]
J. Ali, M. Dela Paz, C.J. Robiso, Advances in two-line heterosis breeding in rice via the temperature-sensitive genetic male sterility system, in: J. Ali, S.H. Wani (Eds.), Rice Improvement: Physiological, Molecular Breeding and Genetic Perspectives, Springer, Cham, the Netherlands, 2021, pp. 99–145.
The Crop Journal
Pages 1187-1197
Cite this article:
Yang D, Xiong L, Mou T, et al. Improving the resistance of the rice PTGMS line Feng39S by pyramiding blast, bacterial blight, and brown planthopper resistance genes. The Crop Journal, 2022, 10(4): 1187-1197. https://doi.org/10.1016/j.cj.2021.11.005

313

Views

2

Downloads

6

Crossref

5

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 29 August 2021
Revised: 10 November 2021
Accepted: 16 November 2021
Published: 17 December 2021
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return