AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Influence of seven levels of chemical/biostimulator protection on amino acid profile and yield traits in wheat

Piotr Iwaniuka( )Rafal KoneckiaPiotr KaczynskiaAlua RysbekovabBozena Lozowickaa
Institute of Plant Protection-National Research Institute, Chelmonskiego 22 Street, 15–195 Bialystok, Poland
Kazakh National Agrarian Research University, Department of Plant Protection, Abai Avenue 8, Almaty 050010, Kazakhstan
Show Author Information

Abstract

Biostimulators combined with pesticides can reduce the need for chemical crop protection to yield healthy wheat with high grain quality and nutritional value. The goal of this four-year field study was an assessment of the effects of seven levels of sulfonylurea herbicide, morpholine and triazole fungicides, and humic biostimulator protection on concentrations of 20 amino acids (AAs) and on yield parameters under diverse climatic conditions. Application of pesticides and biostimulators reduced amino acid concentrations. Sulfonylurea applied alone reduced AAs least. Chemical (herbicide + fungicide) protection or its combination with humic biostimulator were the most effective strategies for increasing yield, thousand-kernel weight, spike number, grain surface area, and wet gluten. Reduced dosages of fungicides showed effects on AA content and crop parameter values similar to those of the recommended dosages of fungicides and are in line with the European Commission’s “From Farm to Fork” strategy. Humic biostimulators as agents supporting pesticide protection should be optimized for wheat growth stage to achieve the most desirable wheat parameters and implemented in agricultural practice.

References

[1]

P.R. Shewry, S.J. Hey, The contribution of wheat to human diet and health, Food Energy Secur. 4 (2015) 178-202.

[2]

D.D. Kasarda, Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breeding? J. Agric. Food Chem. 61 (2013) 1155-1159.

[3]

S. Zhang, X. Zeng, M. Ren, X. Mao, S. Qiao, Novel metabolic and physiological functions of branched chain amino acids: a review, J. Animal Sci. Biotechnol. 8 (2017) 10.

[4]

Y. Kiriyama, H. Nochi, D-amino acids in the nervous and endocrine systems, Science 2016 (2016) 1-9.

[5]

G. Wu, Amino acids: metabolism, functions, and nutrition, Amino Acids. 37 (2009) 1-17.

[6]

G. Wu, Functional amino acids in growth, reproduction, and health, Adv. Nutr. 1 (2010) 31–37.

[7]

M.C.G. Poll, P.B. Soeters, N.E.P. Deutz, K.C.H. Fearon, C.H.C. Dejong, Renal metabolism of amino acids: its role in interorgan amino acid exchange, Am. J. Clin. Nutr. 79 (2004) 185-197.

[8]

Y. Hou, Y. Yin, G. Wu, Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans, Exp. Biol. Med. 240 (2015) 997-1007.

[9]

R. Jonker, M.P.K.J. Engelen, N.E.P. Deutz, Role of specific dietary amino acids in clinical conditions, Br. J. Nutr. 108 (2012) S139-S148.

[10]

M. Abid, S. Ali, L.K. Qi, R. Zahoor, Z. Tian, D. Jiang, J.L. Snider, T. Dai, Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.), Sci. Rep. 8 (2018) 4615.

[11]

V. Kumar, A. Sharma, S.K. Kohli, P. Yadav, S. Bali, P. Bakshi, R.D. Parihar, H. Yuan, D. Yan, Y.i. He, J. Wang, Y. Yang, R. Bhardwaj, A.K. Thukral, B. Zheng, Amino acids distribution in economical important plants: a review, Biotechnol. Res. Innov. 3 (2019) 197-207.

[12]

P. Pepó, Z. Győri, Amino acid compositions in wheat species with different genomes, Cereal Res. Commun. 35 (2007) 1685-1699.

[13]

M. Popko, I. Michalak, R. Wilk, M. Gramza, K. Chojnacka, H. Gorecki, Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat, Molecules 23 (2018) 470.

[14]

P. Zhang, G. Ma, C. Wang, H. Lu, S. Li, Y. Xie, D. Ma, Y. Zhu, T. Guo, G. He, Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat, PLoS ONE 12 (2017) e0178494.

[15]

X. Li, R. Rezaei, P. Li, G. Wu, Composition of amino acids in feed ingredients for animal diets, Amino Acids 40 (2011) 1159-1168.

[16]

G. Wu, F.W. Bazer, Z. Dai, D. Li, J. Wang, Z. Wu, Amino acid nutrition in animals: protein synthesis and beyond, Annu. Rev. Anim. Biosci. 2 (2014) 387-417.

[17]

W.L. Bryden, X. Li, Amino acid digestibility and poultry feed formulation: expression, limitations and application, R. Bras. Zootec. 39 (2010) 279-287.

[18]

H. Kraehmer, B. Laber, C. Rosinger, A. Schulz, Herbicides as weed control agents: state of the art: I. weed control research and safener technology: the path to modern agriculture, Plant Physiol. 166 (2014) 1119-1131.

[19]

E. Byamukama, S. Ali, J. Kleinjan, D.N. Yabwalo, C. Graham, M. Caffe-Treml, N.D. Mueller, J. Rickertsen, W.A. Berzonsky, Winter wheat grain yield response to fungicide application is influenced by cultivar and rainfall, Plant Pathol. J. 35 (2019) 63-70.

[20]

M. VIECELLI, F.B. PAGNONCELLI JR., M.M. TREZZI, B.M. CAVALHEIRO, R.C.R. GOBETTI, Response of wheat plants to combinations of herbicides with insecticides and fungicides, Planta Daninha 37 (2019) e019187012.

[21]

B. Lozowicka, R. Konecki, P. Iwaniuk, W. Dragowski, J. Rusilowska, A. Pietraszko, K. Snarska, Effect of a biostimulator and herbicidal protection on weed infestation as well as quantitative and qualitative parameters of spring wheat crop yield, Prog. Plant Prot. 59 (2019) 258-264.

[22]

S.A. Anjum, L. Wang, M. Farooq, L. Xue, S. Ali, Fulvic acid application improves the maize performance under well-watered and drought conditions, J. Agron. Crop Sci. 197 (2011) 409–417

[23]

A. Nugmanov, I. Beishova, S. Kokanov, B. Lozowicka, P. Kaczynski, R. Konecki, K. Snarska, E. Wołejko, N. Sarsembayeva, T. Abdigaliyeva, Systems to reduce mycotoxin contamination of cereals in the agricultural region of Poland and Kazakhstan, Crop Prot. 106 (2018) 64-71.

[24]

A. Artyszak, D. Gozdowski, The effect of growth activators and plant growth-promoting rhizobacteria (PGPR) on the soil properties, root yield, and technological quality of sugar beet, Agronomy 10 (2020) 1262.

[25]
U. Meier, Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph, Julius Kuhn-Institute, Quedlinburg, Germany, 2018.
[26]
SANTE, Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food andfeed, 2017, Document No. SANTE/11813/2017, https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11813_2017-fin.pdf.
[27]

P. Iwaniuk, B. Lozowicka, P. Kaczynski, R. Konecki, Multifactorial wheat response under Fusarium culmorum, herbicidal, fungicidal and biostimulator treatments on the biochemical and mycotoxins status of wheat, J. Saudi Soc. Agric. Sci. 20 (2021) 443-453.

[28]

L.I. Solomienko, O.M. Nagorniuk, Metabolic control of the insecticides safety use, Ann. Agric. Sci. 14 (2016) 114-118.

[29]

M.L. Healy-Fried, T. Funke, M.A. Priestman, H. Han, E. Schönbrunn, Structural basis of glyphosate tolerance resulting from mutations of Pro101 in Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase, J. Biol. Chem. 282 (2007) 32949-32955.

[30]

A. Parthasarathy, P.J. Cross, R. Dobson, L.E. Adams, M.A. Savka, A.O. Hudson, A three-ring circus: metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals, Front. Mol. Biosci. 5 (2018) 29.

[31]

M.B. Colovic, V.M. Vasic, D.M. Djuric, D.Z. Krstic, Sulphur-containing amino acids: protective role against free radicals and heavy metals, Curr. Med. Chem. 25 (2018) 1-12.

[32]

M.E. Nimni, B. Han, F. Cordoba, Are we getting enough sulfur in our diet? Nutr. Metab. 4 (2007) 24.

[33]

B. Mishra, G. Wang, The importance of amino acid composition in natural AMPs: an evolutional, structural, and functional perspective, Front. Immunol. 3 (2012) 221.

[34]

S.K. Shakir, S. Irfan, B. Akhtar, S.U. Rehman, M.K. Daud, N. Taimur, A. Azizullah, Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings, Ecotoxicology 27 (2018) 919-935.

[35]

C. Romano, G. Corsetti, G. Flati, E. Pasini, A. Picca, R. Calvani, E. Marzetti, F.S. Dioguardi, Influence of diets with varying essential/nonessential amino acid ratios on mouse lifespan, Nutrients 11 (2019) 1367.

[36]

W.F. Texeira, E.B. Fagan, L.H. Soares, R.C. Umburanas, K. Reichardt, D.D. Neto, Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop, Front. Plant Sci. 8 (2017) 327.

[37]

S. Sondhia, P.J. Khankhane, P.K. Singh, A.R. Sharma, Determination of imazethapyr residues in soil and grains after its application to soybeans, J. Pestic. Sci. 40 (2015) 106-110.

[38]

S. Gaba, E. Gabriel, J. Chadœuf, F. Bonneu, V. Bretagnolle, Herbicides do not ensure for higher wheat yield, but eliminate rare plant species, Sci. Rep. 6 (2016) 30112.

[39]

M. Drobek, M. Frac, J. Cybulska, Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress-a review, Agronomy 9 (2019) 335.

[40]

A.C. KARKANIS, E. VELLIOS, F. GRIGORIOU, T. GKRIMPIZIS, P. GIANNOULI, Evaluation of efficacy and compatibility of herbicides with fungicides in durum wheat (Triticum durum Desf.) under different environmental conditions: effects on grain yield and gluten content, Not. Bot. Horti. Agrobo. 46 (2018) 601-607.

[41]

I. Brzozowska, J. Brzozowski, M. Hruszka, B. Witkowski, Effect of herbicides and herbicide combinations and of the method of nitrogen application on winter wheat yielding and yield structure, Acta Agrophys. 11 (2008) 33-44.

[42]

Y. Liu, Y. Liao, W. Liu, High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets, Crop J. 9 (2021) 412-426.

[43]

M. Malalgoda, J.B. Ohm, K.A. Howatt, S. Simsek, Pre-harvest glyphosate application and effects on wheat starch chemistry: Analysis from application to harvest, J. Food Biochem. 44 (2020) e13330.

[44]

K. Kotwica, I. Jaskulska, L. Galezewski, D. Jaskulski, R. Lamparski, Spring wheat yield in short-term monoculture depending on the tillage method, use of organic matter and a biostimulant, Acta Sci. Pol. 13 (2014) 19-28.

[45]

E. Wolejko, B. Lozowicka, P. Kaczynski, R. Konecki, M. Grobela, The influence of chemical protection on the content of heavy metals in wheat (Triticum aestivum L.) growing on the soil enriched with granular sludge, Environ. Monit. Assess. 189 (2017) 424.

The Crop Journal
Pages 1198-1206
Cite this article:
Iwaniuk P, Konecki R, Kaczynski P, et al. Influence of seven levels of chemical/biostimulator protection on amino acid profile and yield traits in wheat. The Crop Journal, 2022, 10(4): 1198-1206. https://doi.org/10.1016/j.cj.2021.12.007

285

Views

2

Downloads

19

Crossref

16

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 10 September 2021
Revised: 03 December 2021
Accepted: 04 January 2022
Published: 25 January 2022
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return