AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

miR398b negatively regulates cotton immune responses to Verticillium dahliae via multiple targets

Yuhuan Miaoa,bKun ChenaJinwu DengcLin ZhangaWeiran WangdJie KongdSteven J. KlostermaneXianlong ZhangaAlifu Aierxid( )Longfu Zhua( )
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
Hubei University of Chinese Medicine, Wuhan 430065, Hubei, China
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumchi 842000, Xinjiang, China
United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, USA
Show Author Information

Abstract

MicroRNAs (miRNAs) play essential roles in plant defense responses, although such roles have not been identified in cotton in response to the plant pathogenic fungus Verticillium dahliae. In this study, the functions of miR398b and its target genes in cotton-V. dahliae interaction were investigated. The transcript levels of miR398b were down-regulated by V. dahliae infection and miR398b overexpression in cotton made the plants more susceptible to V. dahliae. The results suggest that miR398b negatively regulates cotton resistance to V. dahliae. This may occur by miR398b repression of some CC-NBS-LRR genes via translational inhibition, interfering with defense responses and leading to cotton susceptibility to V. dahliae. Alternatively, miR398b may guide the cleavage of the mRNAs of GhCSD1, GhCSD2 and GhCCS, each of which functions in reactive oxygen species (ROS) regulation and homeostasis, thereby causing excessive ROS accumulation in miR398b-overexpressing plants in response to V. dahliae infection. This study suggests conserved and novel roles of miR398b in the cotton–V. dahliae interaction. These discoveries may be coupled with new strategies in cotton breeding programs to improve resistance to V. dahliae.

References

[1]

L. Xu, L.F. Zhu, X.L. Zhang, Research on resistance mechanism of cotton to Verticillium wilt, Acta Agron. Sin. 38 (2012) 1553-1560.

[2]

D.D. Zhang, J. Wang, D. Wang, Z.Q. Kong, L. Zhou, G.Y. Zhang, Y.J. Gui, J.J. Li, J.Q. Huang, B.L. Wang, C. Liu, C.M. Yin, R.X. Li, T.G. Li, J.L. Wang, D.P.G. Short, S.J. Klosterman, R.M. Bostock, K.V. Subbarao, J.Y. Chen, X.F. Dai, Population genomics demystifies the defoliation phenotype in the plant pathogen Verticillium dahliae, New Phytol. 222 (2019) 1012-1029.

[3]

S.J. Klosterman, Z.K. Atallah, G.E. Vallad, K.V. Subbarao, Diversity, pathogenicity, and management of Verticillium species, Annu. Rev. Phytopathol. 47 (2009) 39-62.

[4]

S.T. Chisholm, G. Coaker, B. Day, B.J. Staskawicz, Host-microbe interactions: shaping the evolution of the plant immune response, Cell 124 (2006) 803-814.

[5]

J.D.G. Jones, J.L. Dangl, The plant immune system, Nature 444 (2006) 323-329.

[6]

E.A. van der Biezen, J.D.G. Jones, The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals, Curr. Biol. 8 (1998) 226-228.

[7]

D. Tian, M.B. Traw, J.Q. Chen, M. Kreitman, J. Bergelson, Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana, Nature 423 (2003) 74.

[8]

R. Mittler, S. Vanderauwera, N. Suzuki, G. Miller, V.B. Tognetti, K. Vandepoele, M. Gollery, V. Shulaev, F. van Breusegem, ROS signaling: the new wave? Trends Plant Sci. 16 (2011) 300-309.

[9]

R. Mittler, ROS are good, Trends Plant Sci. 22 (2017) 11-19.

[10]

K. Apel, H. Hirt, Reactive oxygeb species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol. 55 (2004) 373-399.

[11]

Q. Guan, X. Lu, H. Zeng, Y. Zhang, J. Zhu, Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis, Plant J. 74 (2013) 840-851.

[12]

C.H. Huang, W.Y. Kuo, C. Weiss, T.L. Jinn, Copper chaperone-dependent and - independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis, Plant Physiol. 158 (2011) 737–746.

[13]

X. Leng, P. Wang, X. Zhu, X. Li, T. Zheng, L. Shangguan, J. Fang, Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance, Funct. Integr. Genomics 17 (2017) 697-710.

[14]

R. Sunkar, A. Kapoor, J.K. Zhu, Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance, Plant Cell 18 (2006) 2051–2065.

[15]

A.E. Voloudakis, P. Marmey, E. Delannoy, A. Jalloul, C. Martinez, M. Nicole, Molecular cloning and characterization of Gossypium hirsutum superoxide dismutase genes during cotton–Xanthomonas campestris pv. malvacearum interaction, Physiol. Mol. Plant Pathol. 68 (2006) 119-127.

[16]

W. Xu, Y. Meng, R.P. Wise, Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus, New Phytol. 201 (2014) 1396-1412.

[17]

B.J. Reinhart, F.J. Slack, M. Basson, A.E. Pasquinelli, J.C. Bettinger, A.E. Rougvie, H.R. Horvitz, G. Ruvkun, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature 403 (2000) 901.

[18]

B.J. Reinhart, E.G. Weinstein, M.W. Rhoades, B. Bartel, D.P. Bartel, MicroRNAs in plants, Genes Dev. 16 (2002) 1616-1626.

[19]

O. Voinnet, Origin, biogenesis, and activity of plant microRNAs, Cell 136 (2009) 669-687.

[20]

M. Xie, S. Zhang, B. Yu, microRNA biogenesis, degradation and activity in plants, Cell. Mol. Life Sci. 72 (2015) 87-99.

[21]

N.G. Bologna, O. Voinnet, The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis, Annu. Rev. Plant Biol. 65 (2014) 473-503.

[22]

J.M. Couzigou, J.P. Combier, Plant microRNAs: key regulators of root architecture and biotic interactions, New Phytol. 212 (2016) 22-35.

[23]

C. Guo, Y. Xu, M. Shi, Y. Lai, X. Wu, H. Wang, Z. Zhu, R.S. Poethig, G. Wu, Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis, Plant Cell 29 (2017) 1293.

[24]

W. Huang, S. Peng, Z. Xian, D. Lin, G. Hu, L.u. Yang, M. Ren, Z. Li, Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis, Plant Biotechnol. J. 15 (2017) 472-488.

[25]

H. Zhang, J. Zhang, J. Yan, F. Gou, Y. Mao, G. Tang, J.R. Botella, J.K. Zhu, Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits, Proc. Nat. Acad. Sci. U. S. A. 114 (2017) 5277-5282.

[26]

Y. Deng, J. Wang, J. Tung, D. Liu, Y. Zhou, S. He, Y. Du, B. Baker, F. Li, S.P. Dinesh-Kumar, A role for small RNA in regulating innate immunity during plant growth, PLoS Pathog. 14 (2018) e1006756.

[27]

Y. Ding, Y. Ma, N. Liu, J. Xu, Q. Hu, Y. Li, Y. Wu, S. Xie, L. Zhu, L. Min, X. Zhang, microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum), Plant J. 91 (2017) 977-994.

[28]

S. Li, C. Castillo-Gonzalez, B. Yu, X. Zhang, The functions of plant small RNAs in development and in stress responses, Plant J. 90 (2017) 654-670.

[29]

F. Li, D. Pignatta, C. Bendix, J.O. Brunkard, M.M. Cohn, J. Tung, H. Sun, P. Kumar, B. Baker, MicroRNA regulation of plant innate immune receptors, Proc. Nat. Acad. Sci. U. S. A. 109 (2012) 1790-1795.

[30]

P.V. Shivaprasad, H.M. Chen, K. Patel, D.M. Bond, B.A.C.M. Santos, D.C. Baulcombe, A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs, Plant Cell 24 (2012) 859-874.

[31]

J. Liu, X. Cheng, D.A. Liu, W. Xu, R. Wise, Q.H. Shen, J.M. McDowell, The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling, PLoS Genet. 10 (2014) e1004755.

[32]

C. Cui, J.J. Wang, J.H. Zhao, Y.Y. Fang, X.F. He, H.S. Guo, C.G. Duan, A Brassica miRNA regulates plant growth and immunity through distinct modes of action, Mol. Plant 13 (2020) 231-245.

[33]

Q. Fei, Y.U. Zhang, R. Xia, B.C. Meyers, Small RNAs add zing to the Zig-Zag-Zig model of plant defenses, MPMI 29 (2016) 165-169.

[34]

Q. Wang, N. Liu, X. Yang, L. Tu, X. Zhang, Small RNA-mediated responses to low- and high-temperature stresses in cotton, Sci. Rep. 6 (2016) 35558.

[35]

C. Zhu, Y. Ding, H. Liu, MiR398 and plant stress responses, Physiol. Plant. 143 (2011) 1-9.

[36]

G. Jagadeeswaran, A. Saini, R. Sunkar, Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis, Planta 229 (2009) 1009-1014.

[37]

Y. Li, Q. Zhang, J. Zhang, L. Wu, Y. Qi, J.M. Zhou, Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity, Plant Physiol. 152 (2010) 2222-2231.

[38]

L. Beauclair, A. Yu, N. Bouché, microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis, Plant J. 62 (2010) 454-462.

[39]

M.W. Jones-Rhoades, D.P. Bartel, Computational identification of plant microRNAs and their targets, including a stress-induced miRNA, Mol. Cell 14 (2004) 787-799.

[40]

M.D. Curtis, U. Grossniklaus, A gateway cloning vector set for high-throughput functional analysis of genes in planta, Plant Physiol. 133 (2003) 462–469.

[41]

Y. Li, X.L. Cao, Y. Zhu, X.M. Yang, K.N. Zhang, Z.Y. Xiao, H.E. Wang, J.H. Zhao, L.L. Zhang, G.B. Li, Y.P. Zheng, J. Fan, J. Wang, X.Q. Chen, X.J. Wu, J.Q. Zhao, O.X. Dong, X.W. Chen, M. Chern, W.M. Wang, Osa-miR398b boosts H2O2 production and rice blast disease-resistance via multiple superoxide dismutases, New Phytol. 222 (2019) 1507-1522.

[42]

W. Gao, L.U. Long, L.F. Zhu, L.I. Xu, W.H. Gao, L.Q. Sun, L.L. Liu, X.L. Zhang, Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae, Mol. Cell. Proteomics 12 (2013) 3690-3703.

[43]

N. Liu, L. Tu, W. Tang, W. Gao, K. Lindsey, X. Zhang, Small RNA and degradome profiling reveals a role for miRNAs and their targets in the developing fibers of Gossypium barbadense, Plant J. 80 (2014) 331-344.

[44]

S. Jin, X. Zhang, Y. Nie, X. Guo, S. Liang, H. Zhu, Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton, Biol. Plant. 50 (2006) 519-524.

[45]

L. Sun, L. Zhu, L. Xu, D. Yuan, L. Min, X. Zhang, Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway, Nat. Commun. 5 (2014) 5372.

[46]

R.P. Hellens, A.C. Allan, E.N. Friel, K. Bolitho, K. Grafton, M.D. Templeton, S. Karunairetnam, A.P. Gleave, W.A. Laing, Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants, Plant Methods 1 (2005) 13.

[47]

H. Chen, Y. Zou, Y. Shang, H. Lin, Y. Wang, R. Cai, X. Tang, J.M. Zhou, Firefly luciferase complementation imaging assay for protein-protein interactions in plants, Plant Physiol. 146 (2008) 368-376.

[48]

W. Gao, L.U. Long, L.I. Xu, K. Lindsey, X. Zhang, L. Zhu, Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton, J. Integr. Plant Biol. 58 (2016) 503-513.

[49]

L. Xu, W. Zhang, X. He, M. Liu, K. Zhang, M. Shaban, L. Sun, J. Zhu, Y. Luo, D. Yuan, X. Zhang, L. Zhu, Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies, J. Exp. Bot. 65 (2014) 6679-6692.

[50]

R.A. Jefferson, T.A. Kavanagh, M.W. Bevan, GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J. 6 (1987) 3901-3907.

[51]

X. Dai, Z. Zhuang, P.X. Zhao, psRNATarget: a plant small RNA target analysis server, Nucleic Acids Res. 46 (2018) 49-54.

[52]

Y.H. Miao, L. Xu, X. He, L. Zhang, M. Shaban, X.L. Zhang, L.F. Zhu, Suppression of tryptophan synthase activates cotton immunity by triggering cell death via promoting SA synthesis, Plant J. 98 (2019) 329-345.

[53]

Q. Hu, L. Zhu, X. Zhang, Q. Guan, S. Xiao, L. Min, X. Zhang, GhCPK33 negatively regulates defense against Verticillium dahliae by phosphorylating GhOPR3, Plant Physiol. 178 (2018) 876-889.

[54]

C. Ottmann, B. Luberacki, I. Kufner, W. Koch, F. Brunner, M. Weyand, L. Mattinen, M. Pirhonen, G. Anderluh, H.U. Seitz, T. Nurnberger, C. Oecking, A common toxin fold mediates microbial attack and plant defense, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 10359-10364.

[55]

D. Qutob, B. Kemmerling, F. Brunner, I. Kufner, S. Engelhardt, A.A. Gust, B. Luberacki, H.U. Seitz, D. Stahl, T. Rauhut, E. Glawischnig, G. Schween, B. Lacombe, N. Watanabe, E. Lam, R. Schlichting, D. Scheel, K. Nau, G. Dodt, D. Hubert, M. Gijzen, T. Nurnberger, Phytotoxicity and innate immune responses induced by Nep1-like proteins, Plant Cell 18 (2006) 3721–3744.

[56]

J.Y. Wang, Y.U. Cai, J.Y. Gou, Y.B. Mao, Y.H. Xu, W.H. Jiang, X.Y. Chen, VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting, Appl. Environ. Microbiol. 70 (2004) 4989-4995.

[57]

X. He, Q. Sun, H. Jiang, X. Zhu, J. Mo, L. Long, L. Xiang, Y. Xie, Y. Shi, Y. Yuan, Y. Cai, Identification of novel microRNAs in the Verticillium wilt-resistant upland cotton variety KV-1 by high-throughput sequencing, SpringerPlus 3 (2014) 564.

[58]

G. Hu, M. Hao, L.E. Wang, J. Liu, Z. Zhang, Y.E. Tang, Q. Peng, Z. Yang, J. Wu, The cotton miR477-CBP60A module participates in plant defense against Verticillium dahlia, Mol. Plant-Microbe Interact. 33 (2020) 624-636.

[59]

Z. Yin, Y. Li, X. Han, F. Shen, J.H. Ahn, Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae–inoculated cotton roots, PLoS ONE 7 (2012) e35765.

[60]

Q.H. Zhu, L. Fan, Y. Liu, H. Xu, D. Llewellyn, I. Wilson, J. Zhang, miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton, PLoS ONE 8 (2013) e84390.

[61]

T. Zhang, Y.L. Zhao, J.H. Zhao, S. Wang, Y. Jin, Z.Q. Chen, Y.Y. Fang, C.L. Hua, S.W. Ding, H.S. Guo, Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen, Nat. Plants 2 (2016) 1-6.

[62]

P. Brodersen, L. Sakvarelidze-Achard, M. Bruun-Rasmussen, P. Dunoyer, Y.Y. Yamamoto, L. Sieburth, O. Voinnet, Widespread translational inhibition by plant miRNAs and siRNAs, Science 320 (2008) 1185-1190.

[63]
X. Chen, O. Rechavi, Plant and animal small RNA communications between cells and organisms, Nat. Rev. Mol. Cell Biol. (2021), https://doi.org/10.1038/s41580-021-00425-y.
[64]

J.J. Song, S.K. Smith, G.J. Hannon, L. Joshua-Tor, Crystal structure of Argonaute and its implications for RISC slicer activity, Science 305 (2004) 1434-1437.

[65]

Y.L. Zhao, T.T. Zhou, H.S. Guo, R.A. Wilson, Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae, PLoS Pathog. 12 (2016) e1005793.

[66]

K.R. Chung, Stress response and pathogenicity of the necrotrophic fungal pathogen Alternaria alternata, Scientifica 2012 (2012) 635431.

[67]

E.M. Govrin, A. Levine, The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea, Curr. Biol. 10 (2000) 751-757.

[68]

Y.B. Li, L.B. Han, H.Y. Wang, J. Zhang, S.T. Sun, D.Q. Feng, C.L. Yang, Y.D. Sun, N.Q. Zhong, G.X. Xia, The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Verticillium dahliae infection in cotton, Plant Physiol. 170 (2016) 2392-2406.

[69]

L.U. Long, J.R. Zhao, F.C. Xu, W.W. Yang, P. Liao, Y.A. Gao, W. Gao, C.P. Song, Silencing of GbANS reduces cotton resistance to Verticillium dahliae through decreased ROS scavenging during the pathogen invasion process, Plant Cell Tissue Organ Cult. 135 (2018) 213-221.

[70]

A.F. Miller, Superoxide dismutases: ancient enzymes and new insights, FEBS Lett. 586 (2012) 585-595.

The Crop Journal
Pages 1026-1036
Cite this article:
Miao Y, Chen K, Deng J, et al. miR398b negatively regulates cotton immune responses to Verticillium dahliae via multiple targets. The Crop Journal, 2022, 10(4): 1026-1036. https://doi.org/10.1016/j.cj.2021.12.010

389

Views

5

Downloads

9

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 02 September 2021
Revised: 11 November 2021
Accepted: 26 December 2021
Published: 24 January 2022
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return