AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (836.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Characterization of Rsg2.a3: A new greenbug resistance allele at the Rsg2 locus from wild barley (Hordeum vulgare ssp. spontaneum)

Xiangyang Xua( )Dolores Mornhinwega( )Amy BernardobGenqiao LiaRuolin BiancBrian J. SteffensondGuihua Baib
USDA-ARS Wheat, Peanut, and Other Field Crop Research Unit, Stillwater, OK 74075, USA
USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
Show Author Information

Abstract

Greenbug (Schizaphis graminum Rondani) is a destructive insect pest that not only damages plants, but also serves as a vector for many viruses. Host plant resistance is the preferred strategy for managing greenbug. Two greenbug resistance genes, Rsg1 and Rsg2, have been reported in barley. To breed cultivars with effective resistance against various greenbug biotypes, additional resistance genes are urgently needed to sustain barley production. Wild barley accession WBDC053 (PI 681777) was previously found to be resistant to several greenbug biotypes. In this study, a recombinant inbred line (RIL) population derived from Weskan × WBDC053 was evaluated for response to two greenbug biotypes (E and TX1) and genotyped using genotyping by sequencing (GBS). A set of 3347 high quality GBS-derived single nucleotide polymorphisms (SNPs) were then used to map the greenbug resistance gene in this wild barley accession. Linkage analysis placed the greenbug resistance gene in a 2.35 Mb interval (0–2,354,645 bp) in the terminal region of the short arm of chromosome 2H. This interval harbors 15 genes with leucine-rich-repeat (LRR) protein domains. An allelism test indicated that the greenbug resistance gene in WBDC053, designated Rsg2.a3, is likely allelic or closely linked to Rsg2. GBS-SNPs 2H_1318811 and 2H_1839499 co-segregating with Rsg2.a3 in the RIL population were converted to Kompetitive allele specific PCR (KASP) markers KASP-Rsg2.a3-1 and KASP-Rsg2.a3-2, respectively. The two KASP markers can be used to select Rsg2.a3 and have the potential to tag Rsg2 in barley improvement programs.

References

[1]
FAOSTAT, Crops/Regions/World List/Production Quantity for Barley, https://www.fao.org/faostat/en/#home.
[2]
S.E. Ullrich, Barley: Production, Improvement and Uses, Wiley-Blackwell, Ames, IA, USA, 2011.
[3]
K.J. Starks, R.L. Burton, Preventing Greenbug Outbreaks. Report no. 309, United States Department of Agriculture (USDA) Science, Education, and Administration Leaflet, Washington, DC, USA, 1977.
[4]

K.L. Giles, T.A. Royer, N.C. Elliott, S.D. Kindler, Development and validation of a binomial sequential sampling plan for greenbug (Homoptera: Aphididae) infesting winter wheat in the southern plains, J. Econ. Entomol. 93 (2000) 1522-1530.

[5]

K.L. Giles, D.B. Jones, T.A. Royer, N.C. Elliott, S.D. Kindler, Development of a sampling plan in winter wheat that estimates cereal aphid parasitism levels and predicts population suppression, J. Econ. Entomol. 96 (2003) 975-982.

[6]

L.H. Edwards, E.L. Smith, H. Pass, G.H. Morgan, Registration of post barley, Crop Sci. 25 (1985) 363.

[7]

D.W. Mornhinweg, L.H. Edwards, E.L. Smith, G.H. Morgan, J.A. Webster, D.R. Porter, B.F. Carver, Registration of 'Post 90' barley, Crop Sci. 44 (2004) 2263.

[8]

D.W. Mornhinweg, J.S. Armstrong, B.F. Carver, T.L. Springer, Registration of STARS 1501B and STARS 1502B barley germplasm with Rsg2 resistance to greenbug, J. Plant Regist. 12 (2018) 237-240.

[9]

J.A. Webster, K.J. Starks, Sources of resistance in barley to two biotypes of the greenbug Schizaphis graminum (Rondani), Homoptera: Aphididae, Protect. Ecol. 6 (1984) 51-55.

[10]

D.R. Porter, J.D. Burd, D.W. Mornhinweg, Differentiating greenbug resistance genes in barley, Euphytica 153 (2007) 11-14.

[11]

J.S. Armstrong, D.W. Mornhinweg, M.E. Payton, G.J. Puterka, The discovery of resistant sources of spring barley, Hordeum vulgare ssp. spontaneum, and unique greenbug biotypes, J. Econ. Entomol. 109 (2016) 434-438.

[12]

P. Azhaguvel, D. Mornhinweg, D. Vidya-Saraswathi, J.C. Rudd, K. Chekhovskiy, M. Saha, T.J. Close, L.S. Dahleen, Y. Weng, F. Ordon, Molecular mapping of greenbug (Schizaphis graminum) resistance gene Rsg1 in barley, Plant Breed. 133 (2014) 227-233.

[13]

B.J. Steffenson, P. Olivera, J.K. Roy, Y. Jin, K.P. Smith, G.J. Muehlbauer, A walk on the wild side: mining wild wheat and barley collections for rust resistance genes, Aust. J. Agric. Res. 58 (2007) 532-544.

[14]

N. Ames, A. Dreiseitl, B.J. Steffenson, G.J. Muehlbauer, Mining wild barley for powdery mildew resistance, Plant. Pathol. 64 (2015) 1396-1406.

[15]

K.B. Porter, G.L. Peterson, O. Vise, A new greenbug biotype 1, Crop Sci. 22 (1982) 847-850.

[16]

J. Dubcovsky, A.F. Galvez, J. Dvořák, Comparison of the genetic organization of the early salt-stress-response gene system in salt tolerant Lophopyrum elongatum and salt-sensitive wheat, Theor. Appl. Genet. 87 (1994) 957-964.

[17]

M. Mascher, S. Wu, P.S. Amand, N. Stein, J. Poland, H. Candela, Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley, PLoS ONE 8 (2013) e76925.

[18]

R.J. Elshire, J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, S.E. Mitchell, L. Orban, A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species, PLoS ONE 6 (2011) e19379.

[19]

J.C. Glaubitz, T.M. Casstevens, F. Lu, J. Harriman, R.J. Elshire, Q. Sun, E.S. Buckler, N.A. Tinker, TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline, PLoS ONE 9 (2014) e90346.

[20]

M. Mascher, H. Gundlach, A. Himmelbach, S. Beier, S.O. Twardziok, T. Wicker, V. Radchuk, C. Dockter, P.E. Hedley, J. Russell, M. Bayer, A chromosome conformation capture ordered sequence of the barley genome, Nature 544 (2017) 427-433.

[21]

L. Meng, H. Li, L. Zhang, J. Wang, Q.T.L. IciMapping, integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations, Crop J. 3 (2018) 269-283.

[22]

D.D. Kosambi, The estimation of map distances from recombination values, Ann. Eugen. 12 (1944) 172-175.

[23]

R.E. Voorrips, MapChart: software for the graphical presentation of linkage maps and QTLs, J. Hered. 93 (2002) 77-78.

[24]

X. Xu, G. Li, B.F. Carver, J.S. Armstrong, Gb8, a new gene conferring resistance to economically important greenbug biotypes in wheat, Theor. Appl. Genet. 133 (2020) 615-622.

[25]

P. Vos, G. Simons, T. Jesse, J. Wijbrandi, L. Heinen, R. Hogers, A. Frijters, J. Groenendijk, P. Diergaarde, M. Reijans, J. Fierens-Onstenk, The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids, Nat. Biotechnol. 16 (1998) 1365-1369.

[26]
J. Pauquet, E. Burget, L. Hagen, V.A. Chovelon, A.L. Menn, N. Valot, S. Desloire, M. Caboche, P. Rousselle, M. Pitrat, A. Bendahmane, Mapbased cloning of the Vat gene from melon conferring resistance to both aphid colonization and aphid transmission of several viruses, in: Progress in cucurbit genetics and breeding research. Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding, Olomouc, Czech Republic, July 12–17, 2004, Palacký University, Olomouc, Czech Republic, pp. 325–329.
[27]

B. Du, W. Zhang, B. Liu, J. Hu, Z. Wei, Z. Shi, R. He, L. Zhu, R. Chen, B. Han, G. He, Identification and characterization of Bph14, a Gene conferring resistance to brown planthopper in rice, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 22163-22168.

[28]

H. Ji, S.R. Kim, Y.H. Kim, J.P. Suh, H.M. Park, N. Sreenivasulu, G. Misra, S.M. Kim, S.J. Hechanova, H. Kim, G.S. Lee, Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest, Sci. Rep. 6 (2016) 34376.

[29]

Y. Tamura, M. Hattori, H. Yoshioka, M. Yoshioka, A. Takahashi, J. Wu, N. Sentoku, H. Yasui, Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52, Sci. Rep. 4 (2014) 5872.

The Crop Journal
Pages 1727-1732
Cite this article:
Xu X, Mornhinweg D, Bernardo A, et al. Characterization of Rsg2.a3: A new greenbug resistance allele at the Rsg2 locus from wild barley (Hordeum vulgare ssp. spontaneum). The Crop Journal, 2022, 10(6): 1727-1732. https://doi.org/10.1016/j.cj.2022.01.010

292

Views

4

Downloads

8

Crossref

5

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 10 July 2021
Revised: 20 January 2022
Accepted: 27 January 2022
Published: 01 March 2022
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return