AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The NADPH oxidase OsRbohA increases salt tolerance by modulating K+ homeostasis in rice

Qingwen WangaLan NiaZhenzhen CuiaJingjing JiangaChao ChenaMingyi Jianga,b( )
National Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture/College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, Hunan, China
Show Author Information

Abstract

Rice (Oryza sativa L.) is a staple cereal for more than two thirds of the world's population. Soil salinity severely limits rice growth, development, and grain yield. It is desirable to elucidate the mechanism of rice's salt-stress response. As the major source of H2O2, NADPH oxidase (Rboh) is believed to be involved in salt-stress tolerance. However, the function and mechanism of rice Rboh in salt stress response remain unclear. In this study, we found that the expression of OsRbohA was up-regulated by NaCl treatment in the shoots and roots of rice seedlings. Knockout of OsRbohA reduced the tolerance of rice to salt stress. Knockout of OsRbohA blocked NaCl-induced increases of NADPH activity and H2O2 content in roots. OsRbohA knockout inhibited root growth and disrupted K+ homeostasis by reducing the expression of K+ transporters and channel-associated genes (OsGORK, OsAKT1, OsHAK1, and OsHAK5) in roots under NaCl treatment. Under NaCl treatment, OsRbohA knockout also reduced subcellular K+ contents of the plasma membrane and soluble fraction. Overexpression of OsRbohA increased the expression of K+ transporters and channel-associated genes and reduced the loss of K+ ions in roots. These results indicate that OsRbohA-mediated H2O2 accumulation modulates K+ homeostasis, thereby increasing salt tolerance in rice.

References

[1]

Y. Yang, Y. Guo, Elucidating the molecular mechanisms mediating plant salt-stress responses, New Phytol. 217 (2018) 523–539.

[2]

C.J. Ruan, J. Silva, S. Mopper, Q. Pei, S. Lutts, Halophyte improvement for a salinized world, Crit. Rev. Plant Sci. 29 (2010) 329–359.

[3]

M. Hussain, S. Ahmad, S. Hussain, R. Lal, S. Ul-Allah, A. Nawaz, Rice in saline soils: physiology, biochemistry, genetics, and management, Adv. Agron. 148 (2018) 231–287.

[4]

X. Ma, F. Feng, H. Wei, H. Mei, K. Xu, S. Chen, T. Li, X. Liang, H. Liu, L. Luo, Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes, Front. Plant Sci. 7 (2016) 1801.

[5]

Y. Yang, Y. Guo, Unraveling salt stress signaling in plants, J. Integr. Plant Biol. 60 (2018) 796–804.

[6]

T.X. Chen, S. Shabala, Y.N. Niu, Z.H. Chen, L. Shabala, H. Meinke, G. Venkataraman, A. Pareek, J.L. Xu, M.X. Zhou, Molecular mechanisms of salinity tolerance in rice, Crop J. 9 (2021) 506–520.

[7]

M. Alnayef, C. Solis, L. Shabala, T. Ogura, Z. Chen, J. Bose, F.J.M. Maathuis, G. Venkataraman, K. Tanoi, M. Yu, M. Zhou, T. Horie, S. Shabala, Changes in expression level of OsHKT1;5 alters activity of membrane transporters involved in K+ and Ca2+ acquisition and homeostasis in salinized rice roots, Int. J. Mol. Sci. 21 (2020) 4882.

[8]

J. Liu, S. Shabala, L. Shabala, M. Zhou, H. Meinke, G. Venkataraman, Z. Chen, F. Zeng, Q. Zhao, Tissue-specific regulation of Na+ and K+ transporters explains genotypic differences in salinity stress tolerance in rice, Front. Plant Sci. 10 (2019) 1361.

[9]

S. Neang, I. Goto, N.S. Skoulding, J.A. Cartagena, S. Mitsuya, Tissue-specific expression analysis of Na+ and Cl- transporter genes associated with salt removal ability in rice leaf sheath, BMC Plant Biol. 20 (2020) 502.

[10]

M. Liu, H. Yu, B. Ouyang, C. Shi, V. Demidchik, Z. Hao, M. Yu, S. Shabala, NADPH oxidases and the evolution of plant salinity tolerance, Plant Cell Environ. 43 (2020) 2957–2968.

[11]

K. Apel, H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol. 55 (2004) 373–399.

[12]

W. Wang, D. Chen, X. Zhang, D. Liu, Y. Cheng, F. Shen, Role of plant respiratory burst oxidase homologs in stress responses, Free Radic. Res. 52 (2018) 826–839.

[13]

J. Yan, N. Tsuichihara, T. Etoh, S. Iwai, Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening, Plant Cell Environ. 30 (2007) 1320–1325.

[14]

T. Yamauchi, M. Yoshioka, A. Fukazawa, H. Mori, N.K. Nishizawa, N. Tsutsumi, H. Yoshioka, M. Nakazono, An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions, Plant Cell 29 (2017) 775–790.

[15]

Q.J. Groom, M.A. Torres, A.P. Fordham-Skelton, K.E. Hammond-Kosack, J. Jones, rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene, Plant J. 10 (1996) 515–522.

[16]

Y. Liu, C. He, Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD, Plant Cell Rep. 35 (2016) 995–1007.

[17]

H.L. Wong, R. Pinontoan, K. Hayashi, R. Tabata, T. Yaeno, K. Hasegawa, C. Kojima, H. Yoshioka, K. Iba, T. Kawasaki, K. Shimamoto, Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension, Plant Cell 19 (2007) 4022–4034.

[18]

J.M. Kwak, I.C. Mori, Z.M. Pei, N. Leonhardt, M.A. Torres, J.L. Dangl, R.E. Bloom, S. Bodde, J.D. Jones, J.I. Schroeder, NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis, EMBO J. 22 (2003) 2623–2633.

[19]

E. Amicucci, K. Gaschler, J.M. Ward, NADPH oxidase genes from tomato (Lycopersicon esculentum) and curly-leaf pondweed (Potamogeton crispus), Plant Biol. 1 (1999) 524–528.

[20]

H. Yoshioka, K. Sugie, H.J. Park, H. Maeda, N. Doke, Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato, Mol. Plant-Microbe Interact. 14 (2001) 725–736.

[21]

H. Yoshioka, N. Numata, K. Nakajima, S. Katou, K. Kawakita, O. Rowland, J.D.G. Jones, N. Doke, Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to phytophthora infestans, Plant Cell 15 (2003) 706–718.

[22]

J. Nestler, S. Liu, T. Wen, A. Paschold, C. Marcon, H.M. Tang, D.L. Li, L. Li, R.B. Meeley, H. Sakai, W. Bruce, P.S. Schnable, F. Hocholdinger, Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase, Plant J. 79 (2014) 729–740.

[23]

H.T. Xie, Z.Y. Wan, S. Li, Y. Zhang, Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis, Plant Cell 26 (2014) 2007–2023.

[24]

R. Lassig, T. Gutermuth, T.D. Bey, K.R. Konrad, T. Romeis, Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth, Plant J. 78 (2014) 94–106.

[25]

C.S. Yong, P.F. Yun, Q.L. Wei, NADPH oxidase in plasma membrane is involved in stomatal closure induced by dehydroascorbate, Plant Physiol. Biochem. 51 (2012) 26–30.

[26]

K. Muller, A.C. Carstens, A. Linkies, M.A. Torres, G. Leubner-Metzger, The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening, New Phytol. 184 (2009) 885–897.

[27]

M. Sierla, C. Waszczak, T. Vahisalu, J. Kangasjärvi, Reactive oxygen species in the regulation of stomatal movements, Plant Physiol. 171 (2016) 1569–1580.

[28]

H. Yoshioka, H. Adachi, T. Nakano, N. Miyagawa, S. Asai, N. Ishihama, M. Yoshioka, Hierarchical regulation of NADPH oxidase by protein kinases in plant immunity, Physiol. Mol. Plant Pathol. 95 (2016) 20–26.

[29]

J. Qi, J. Wang, Z. Gong, J.M. Zhou, Apoplastic ROS signaling in plant immunity, Curr. Opin. Plant Biol. 38 (2017) 92–100.

[30]

H. He, J. Yan, X. Yu, Y. Liang, L. Fang, H.V. Scheller, A. Zhang, The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana, Biochem. Biophys. Res. Commun. 491 (2017) 834–839.

[31]

M.A. Torres, J.L. Dangl, J.D. Jones, Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 517–522.

[32]

L. Wang, Y. Guo, L. Jia, H. Chu, S. Zhou, K. Chen, D. Wu, L. Zhao, Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings, Plant Physiol. 164 (2014) 2184–2196.

[33]

F. Wang, Z.H. Chen, X. Liu, L. Shabala, M. Yu, M. Zhou, A. Salih, S. Shabala, The loss ofRBOHDfunction modulates root adaptive responses to combined hypoxia and salinity stress in Arabidopsis, Environ. Exp. Bot. 158 (2019) 125–135.

[34]

M.S. Hossain, K.J. Dietz, Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress, Front. Plant Sci. 7 (2016) 548.

[35]

L. Ma, H. Zhang, L. Sun, Y. Jiao, G. Zhang, C. Miao, F. Hao, NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress, J. Exp. Bot. 63 (2012) 305–317.

[36]

S. Li, N. Wang, D. Ji, W. Zhang, F. Xiang, A GmSIN1/GmNCED3s/GmRbohBs feed-forward loop acts as a signal amplifier that regulates root growth in soybean exposed to salt stress, Plant Cell 31 (2019) 2107–2130.

[37]

D. Liu, Y.Y. Li, Z.C. Zhou, X. Xiang, X. Liu, J. Wang, Z.R. Hu, S.P. Xiang, W. Li, Q.Z. Xiao, Tobacco transcription factor bHLH123 improves salt tolerance by activating NADPH oxidase NtRbohE expression, Plant Physiol. 186 (2021) 1706–1720.

[38]

X. Wang, M.M. Zhang, Y.J. Wang, Y.T. Gao, R. Li, G.F. Wang, W.Q. Li, W.T. Liu, K. M. Chen, The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice, Physiol. Plant. 156 (2016) 421–443.

[39]

L. Ni, X.P. Fu, H. Zhang, X. Li, X. Cai, P.P. Zhang, L. Liu, Q.W. Wang, M.M. Sun, Q. W. Wang, A.Y. Zhang, Z.G. Zhang, M.Y. Jiang, Abscisic acid inhibits rice protein phosphatase PP45 via H2O2 and relieves repression of the Ca2+/CaM-dependent protein kinase DMI3, Plant Cell 31 (2019) 128–152.

[40]

Y. Shi, Y.L. Chang, H.T. Wu, A. Shalmani, W.T. Liu, W.Q. Li, J.W. Xu, K.M. Chen, OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice, Plant Cell Rep. 39 (2020) 1767–1784.

[41]

Z.Q. Duan, L. Bai, Z.G. Zhao, G.P. Zhang, F.M. Cheng, L.X. Jiang, K.M. Chen, Drought-stimulated activity of plasma membrane nicotinamide adenine dinucleotide phosphate oxidase and its catalytic properties in rice, J. Integr. Plant Biol. 51 (2009) 1104–1115.

[42]

Q.W. Wang, L.Y. Jia, D.L. Shi, R.F. Wang, L.N. Lu, J.J. Xie, K. Sun, H.Q. Feng, X. Li, Effects of extracellular ATP on local and systemic responses of bean (Phaseolus vulgaris L.) leaves to wounding, Biosci. Biotechnol. Biochem. 83 (2019) 417–428.

[43]

T. Han, J. Yan, Y. Xiang, A. Zhang, Phosphorylation of ZmNAC84 at Ser-113 enhances the drought tolerance by directly modulating ZmSOD2 expression in maize, Biochem. Biophys. Res. Commun. 567 (2021) 86–91.

[44]

J. Yan, L. Yang, Y. Liu, Y. Zhao, T. Han, X. Miao, A. Zhang, Calcineurin B-like protein 5 (SiCBL5) in Setaria italica enhances salt tolerance by regulating Na+ homeostasis, Crop J. 10 (2022) 234–242.

[45]

Q.S. Jiao, G.T. Niu, F. Wang, J.Y. Dong, Z. Hong, N-glycosylation regulates photosynthetic efficiency of Arabidopsis thaliana, Photosynthetica 58 (2020) 72–79.

[46]

L. Ni, S. Wang, T. Shen, Q. Wang, C. Chen, J. Xia, M. Jiang, Calcium/calmodulin-dependent protein kinase OsDMI3 positively regulates saline-alkaline tolerance in rice roots, Plant Signal. Behav. 15 (2020) 1813999.

[47]

Z. Jabeen, N. Hussain, Y. Han, M.J. Shah, F. Zeng, J. Zeng, G. Zhang, The differences in physiological responses, ultrastructure changes, and Na+ subcellular distribution under salt stress among the barley genotypes differing in salt tolerance, Acta Physiol. Plant. 36 (2014) 2397–2407.

[48]

W. Zhang, G. Zhou, Y.X. Zhao, A.W. Michael, Y.M. Zhao, Affinity enrichment of plasma membrane for proteomics analysis, Electrophoresis 24 (2003) 2855–2863.

[49]

L. Yang, Y. Yu, J. Sun, Q. Cao, S. Jian, Root-zone-specific sensitivity of K+-and Ca2+-permeable channels to H2O2 determines ion homeostasis in salinized diploid and hexaploid Ipomoea trifida, J. Exp. Bot. 70 (2019) 1389–1405.

[50]

Y. Yu, T. Xu, X. Li, J. Tang, D. Ma, Z. Li, J. Sun, NaCl-induced changes of ion homeostasis and nitrogen metabolism in two sweet potato (Ipomoea batatas L.) cultivars exhibit different salt tolerance at adventitious root stage, Environ. Exp. Bot. 129 (2016) 23–36.

[51]

Y. Yu, A. Wang, X. Li, M. Kou, W. Wang, X. Chen, T. Xu, M. Zhu, D. Ma, Z. Li, J. Sun, Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+-ATPase activity and K+/Na+ homeostasis in sweet potato, Front. Plant. Sci. 9 (2018) 256.

[52]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR, Methods 25 (2002) 402–408.

[53]

M. Sagi, R. Fluhr, Production of reactive oxygen species by plant NADPH oxidases, Plant Physiol. 141 (2006) 336–340.

[54]

S. Shabala, T.A. Cuin, Potassium transport and plant salt tolerance, Physiol. Plant. 133 (2008) 651–669.

[55]

J. Liu, J. Zhang, G. Ma, D. Chen, S. Shabala, Melatonin improves rice salinity stress tolerance by NADPH oxidase-dependent control of the plasma membrane K+ transporters and K+ homeostasis, Plant Cell Environ. 43 (2020) 2591–2605.

[56]

M. Niu, Y. Huang, S. Sun, J. Sun, H. Cao, S. Sergey, Z. Bie, Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure, J. Exp. Bot. 69 (2018) 3465–3476.

[57]

C. Zörb, M. Senbayram, E. Peiter, Potassium in agriculture-status and perspectives, J. Plant Physiol. 171 (2014) 656–669.

[58]

S. Jian, S. Dai, R. Wang, S. Chen, N. Li, X. Zhou, C. Lu, S. Xin, X. Zheng, Z. Hu, Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance, Tree Physiol. 29 (2009) 1175–1186.

[59]

Z. Chen, I. Newman, M. Zhou, N. Mendham, G. Zhang, S. Shabala, Screening plants for salt tolerance by measuring K+ flux: a case study for barley, Plant Cell Environ. 28 (2005) 1230–1246.

[60]

T.A. Cuin, S.A. Betts, R. Chalmandrier, S. Shabala, A root's ability to retain K+ correlates with salt tolerance in wheat, J. Exp. Bot. 59 (2008) 2697–2706.

[61]

Z. Chen, Q. Gu, X. Yu, L. Huang, S. Xu, R. Wang, W. Shen, W. Shen, Hydrogen peroxide acts downstream of melatonin to induce lateral root formation, Ann. Bot. 121 (2018) 1127–1136.

[62]

K.B. Rejeb, M. Benzarti, A. Debez, C. Bailly, A. Savouré, C. Abdelly, NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana, J. Plant Physiol. 174 (2015) 5–15.

[63]

V. Demidchik, T.A. Cuin, D. Svistunenko, S.J. Smith, Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death, J. Cell Sci. 123 (2010) 1468–1479.

[64]

S. Shabala, I. Pottosin, Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance, Physiol. Plant. 151 (2014) 257–279.

[65]

S. Waters, M. Gilliham, M. Hrmova, Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity, Int. J. Mol. Sci. 14 (2013) 7660–7680.

[66]

R.N. Amrutha, P.N. Sekhar, R.K. Varshney, P. Kishor, Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.), Plant Sci. 172 (2007) 708–721.

[67]

S. Sergey, Signalling by potassium: another second messenger to add to the list?, J. Exp. Bot. 68 (2017) 4003–4007.

[68]

S. Shabala, Salinity and programmed cell death: unravelling mechanisms for ion specific signalling, J. Exp. Bot. 60 (2009) 709–712.

[69]

F. Rubio, M. Nieves-Cordones, T. Horie, S. Shabala, Doing 'business as usual' comes with a cost: evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions, New Phytol. 225 (2019) 1097–1104.

The Crop Journal
Pages 1611-1622
Cite this article:
Wang Q, Ni L, Cui Z, et al. The NADPH oxidase OsRbohA increases salt tolerance by modulating K+ homeostasis in rice. The Crop Journal, 2022, 10(6): 1611-1622. https://doi.org/10.1016/j.cj.2022.03.004

352

Views

12

Downloads

15

Crossref

13

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 08 September 2021
Revised: 08 November 2021
Accepted: 05 April 2022
Published: 19 April 2022
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return