AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The soybean PLATZ transcription factor GmPLATZ17 suppresses drought tolerance by interfering with stress-associated gene regulation of GmDREB5

Juanying Zhaoa,1Lei Zhenga,1Jitong Weia,1Yixuan WangaJun ChenaYongbin ZhouaMing ChenaFengzhi WangbYouzhi MaaZhao-Shi Xua( )
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
Hebei Key Laboratory of Crop Salt-alkali Stress Tolerance Evaluation and Genetic Improvement/Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061000, Hebei, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Plant AT-rich sequence and zinc binding (PLATZ) transcription factors are a class of plant specific zinc-dependent DNA-binding proteins that function in abiotic stress response and plant development. In this study, 31 GmPLATZ genes were identified in soybean. GmPLATZ17 was down-regulated by drought and exogenous abscisic acid. Transgenic Arabidopsis and soybean hairy roots overexpressing GmPLATZ17 showed drought sensitivity and inhibition of stress-associated gene transcription. In contrast, suppressed expression of GmPLATZ17 led to increased drought tolerance in transgenic soybean hairy roots. The GmPLATZ17 protein was verified to interact physically with the GmDREB5 transcription factor, and overexpression of GmDREB5 increased drought tolerance in soybean hairy roots. Interaction of GmPLATZ17 with GmDREB5 was shown to interfere with the DRE-binding activity of GmDREB5, suppressing downstream stress-associated gene expression. These results show that GmPLATZ17 inhibits drought tolerance by interacting with GmDREB5. This study sheds light on PLATZ transcription factors and the function of GmPLATZ17 in regulating drought sensitivity.

References

[1]

X.J. Ma, T.F. Yu, X.H. Li, X.Y. Cao, J. Ma, J. Chen, Y.B. Zhou, M. Chen, Y.Z. Ma, J.H. Zhang, Z.S. Xu, Overexpression of GmNFYA5 confers drought tolerance to transgenic Arabidopsis and soybean plants, BMC Plant Biol. 20 (2020) 123.

[2]

G.H. He, J.Y. Xu, Y.X. Wang, J.M. Liu, P.S. Li, M. Chen, Y.Z. Ma, Z.S. Xu, Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis, BMC Plant Biol. 16 (2016) 116.

[3]

T.F. Yu, Y. Liu, J.D. Fu, J. Ma, Z.W. Fang, J. Chen, L. Zheng, Z.W. Lu, Y.B. Zhou, M. Chen, Z.S. Xu, Y.Z. Ma, The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance, Plant Biotechnol. J. 19 (2021) 2589-2605.

[4]

W.J. Chen, T. Zhu, Networks of transcription factors with roles in environmental stress response, Trends Plant Sci. 9 (2004) 591-596.

[5]

Z.S. Xu, M. Chen, L.C. Li, Y.Z. Ma, Functions and application of the AP2/ERF transcription factor family in crop improvement, J. Integr. Plant Biol. 53 (2011) 570-585.

[6]

J.K. Zhu, Abiotic stress signaling and responses in plants, Cell 167 (2016) 313-324.

[7]

Y.T. Liu, Q.H. Shi, H.J. Cao, Q.B. Ma, H. Nian, X.X. Zhang, Heterologous expression of a Glycine soja C2H2 zinc finger gene improves aluminum tolerance in Arabidopsis, Int. J. Mol. Sci. 21 (2020) 2754.

[8]

B. Sun, Y. Zhao, S. Shi, M. Yang, K. Xiao, TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes, Plant Physiol. Biochem. 136 (2019) 127-142.

[9]

G.L. Han, F. Yuan, J.R. Guo, Y. Zhang, N. Sui, B.S. Wang, AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis, Plant Sci. 285 (2019) 55-67.

[10]

X. Zhang, B. Zhang, M.J. Li, X.M. Yin, L.F. Huang, Y.C. Cui, M.L. Wang, X. Xia, OsMSR15 encoding a rice C2H2-type zinc finger protein confers enhanced drought tolerance in transgenic Arabidopsis, J. Plant Biol. 59 (2016) 271-281.

[11]

M.Z. Yin, Y.P. Wang, L.H. Zhang, J.Z. Li, W.L. Quan, L. Yang, Q.F. Wang, Z.L. Chan, The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress, J. Exp. Bot. 68 (2017) 2991-3005.

[12]

X. Yuan, P. Huang, R.Q. Wang, H.Y. Li, X.Q. Lyu, M. Duan, H.J. Tang, H.S. Zhang, J. Huang, A zinc finger transcriptional repressor confers pleiotropic effects on rice growth and drought tolerance by down-regulating stress-responsive genes, Plant Cell Physiol. 59 (2018) 2129-2142.

[13]

J. Banerjee, S. Gantait, M.K. Maiti, Physiological role of rice germin-like protein 1 (OsGLP1) at early stages of growth and development in indica rice cultivar under salt stress condition, Plant Cell Tissue Organ Cult. 131 (2017) 127-137.

[14]

A. Cheuk, F. Ouellet, M. Houde, The barley stripe mosaic virus expression system reveals the wheat C2H2 zinc finger protein TaZFP1B as a key regulator of drought tolerance, BMC Plant Biol. 20 (2020) 144.

[15]

X. Luo, X. Bai, D. Zhu, Y. Li, W. Ji, H. Cai, J. Wu, B.H. Liu, Y.M. Zhu, GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress, Planta 235 (2012) 1141-1155.

[16]

M.G. Selvaraj, A. Jan, T. Ishizaki, M. Valencia, B. Dedicova, K. Maruyama, T. Ogata, D. Todaka, K. Yamaguchi-Shinozaki, K. Nakashima, M. Ishitani, Expression of the CCCH-tandem zinc finger protein gene OsTZF5 under a stress-inducible promoter mitigates the effect of drought stress on rice grain yield under field conditions, Plant Biotechnol. J. 18 (2020) 1711-1721.

[17]

W.L. Quan, X. Liu, L.H. Wang, M.Z. Yin, L. Yang, Z.L. Chan, Ectopic expression of Medicago truncatula homeodomain finger protein, MtPHD6, enhances drought tolerance in Arabidopsis, BMC Genomics 20 (2019) 982.

[18]

F. Wang, W. Tong, H. Zhu, W. Kong, R. Peng, Q. Liu, Q. Yao, A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis, Planta 243 (2016) 783-797.

[19]

Y.J. Xu, X. Zhao, P. Aiwaili, X.Y. Mu, M. Zhao, J. Zhao, L.N. Cheng, C. Ma, J.P. Gao, B. Hong, A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum, Plant J. 103 (2020) 1783-1795.

[20]

S.S. Krishna, I. Majumdar, N.V. Grishin, Structural classification of zinc fingers: survey and summary, Nucleic Acids Res. 31 (2003) 532-550.

[21]

T. Pan, Y.D. Halvorsen, R.C. Dickson, J.E. Coleman, The transcription factor LAC9 from Kluyveromyces lactis-like GAL4 from Saccharomyces cerevisiae forms a Zn(II)2Cys6 binuclear cluster, J. Biol. Chem. 265 (1990) 21427-21429.

[22]

M. Papworth, P. Kolasinska, M. Minczuk, Designer zinc-finger proteins and their applications, Gene 366 (2006) 27-38.

[23]

Y. Nagano, H. Furuhashi, T. Inaba, Y. Sasaki, A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences, Nucleic Acids Res. 29 (2001) 4097-4105.

[24]

J. Ooms, K.M. Leon-Kloosterziel, D. Bartels, M. Koornneef, C.M. Karssen, Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (A comparative study using abscisic acid-insensitive abi3 mutants), Plant Physiol. 102 (1993) 1185-1191.

[25]

S.I. González-Morales, R.A. Chávez-Montes, C. Hayano-Kanashiro, G. Alejo-Jacuinde, T.Y. Rico-Cambron, S. de Folter, L. Herrera-Estrella, Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) E5232-E5241.

[26]

S. Liu, R. Yang, M. Liu, S.Z. Zhang, K. Yan, G.D. Yang, J.G. Huang, C.C. Zheng, C.G. Wu, PLATZ2 negatively regulates salt tolerance in Arabidopsis seedlings by directly suppressing the expression of the CBL4/SOS3 and CBL10/SCaBP8 genes, J. Exp. Bot. 71 (2020) 5589-5602.

[27]

J.H. Kim, J. Kim, S.E. Jun, S. Park, R. Timilsina, D.S. Kwon, Y. Kim, S.-J. Park, J.Y. Hwang, H.G. Nam, G.-T. Kim, H.R. Woo, ORESARA15, a PLATZ transcription factor, mediates leaf growth and senescence in Arabidopsis, New Phytol. 220 (2018) 609-623.

[28]

Q. Li, J.C. Wang, J.W. Ye, X.X. Zheng, X.L. Xiang, C.S. Li, M.M. Fu, Q. Wang, Z.Y. Zhang, Y.R. Wu, The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III, Plant Cell 29 (2017) 2661-2675.

[29]

A. Wang, Q.Q. Hou, L.Z. Si, X.H. Huang, J.H. Luo, D.F. Lu, J.J. Zhu, Y.Y. Shangguan, J.S. Miao, Y.F. Xie, Y.C. Wang, Q. Zhao, Q. Feng, C.C. Zhou, Y. Li, D.L. Fan, Y.Q. Lu, Q.L. Tian, Z.X. Wang, B. Han, The PLATZ transcription factor GL6 affects grain length and number in rice, Plant Physiol. 180 (2019) 2077-2090.

[30]

S.R. Zhou, H.W. Xue, The rice PLATZ protein SHORT GRAIN6 determines grain size by regulating spikelet hull cell division, J. Integr. Plant Biol. 62 (2020) 847-864.

[31]

S.C. Zhang, R. Yang, Y.Q. Huo, S.S. Liu, G.D. Yang, J.G. Huang, C.C. Zheng, C.G. Wu, Expression of cotton PLATZ1 in transgenic Arabidopsis reduces sensitivity to osmotic and salt stress for germination and seedling establishment associated with modification of the abscisic acid, gibberellin, and ethylene signalling pathways, BMC Plant Biol. 18 (2018) 218.

[32]

J. Schmutz, S.B. Cannon, J. Schlueter, J. Ma, T. Mitros, W. Nelson, D.L. Hyten, Q. Song, J.J. Thelen, J. Cheng, D. Xu, U. Hellsten, G.D. May, Y. Yu, T. Sakurai, T. Umezawa, M.K. Bhattacharyya, D. Sandhu, B. Valliyodan, E. Lindquist, M. Peto, D. Grant, S. Shu, D. Goodstein, K. Barry, M. Futrell-Griggs, B. Abernathy, J. Du, Z. Tian, L. Zhu, N. Gill, T. Joshi, M. Libault, A. Sethuraman, X.C. Zhang, K. Shinozaki, H.T. Nguyen, R.A. Wing, P. Cregan, J. Specht, J. Grimwood, D. Rokhsar, G. Stacey, R.C. Shoemaker, S.A. Jackson, Genome sequence of the palaeopolyploid soybean, Nature 463 (2010) 178-183.

[33]

H.A. So, S.J. Choi, E. Chung, J.H. Lee, Molecular characterization of stress-inducible PLATZ gene from soybean (Glycine max L.), Plant Omics 8 (2015) 479-484.

[34]

S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870-1874.

[35]

J. Chen, Y. Gong, Y. Gao, Y.B. Zhou, M. Chen, Z.S. Xu, C.H. Guo, Y.Z. Ma, TaNAC48 positively regulates drought tolerance and ABA responses in wheat (Triticum aestivum L.), Crop J. 9 (2020) 785-793.

[36]

J.M. Liu, J.Y. Zhao, P.P. Lu, M. Chen, C.H. Guo, Z.S. Xu, Y.Z. Ma, The E-subgroup pentatricopeptide repeat protein family in Arabidopsis thaliana and confirmation of the responsiveness PPR96 to abiotic stresses, Front. Plant Sci. 7 (2016) 1825.

[37]

X.Y. Cui, Y. Gao, J. Guo, T.F. Yu, W.J. Zheng, Y.W. Liu, J. Chen, Z.S. Xu, Y.Z. Ma, BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1, Plant Physiol. 180 (2019) 605-620.

[38]

A. Kereszt, D. Li, A. Indrasumunar, C.T. Nguyen, S. Nontachaiyapoom, M. Kinkema, P.M. Gresshoff, Agrobacterium rhizogenes-mediated transformation of soybean to study root biology, Nat. Protoc. 2 (2007) 948-952.

[39]

Z.S. Xu, L.Q. Xia, M. Chen, X.G. Cheng, R.Y. Zhang, L.C. Li, Y.X. Zhao, Y. Lu, Z.Y. Ni, L. Liu, Z.G. Qiu, Y.Z. Ma, Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance, Plant Mol. Biol. 65 (2007) 719-732.

[40]

H.M. Chen, Y. Zou, Y.L. Shang, H.Q. Lin, Y.J. Wang, R. Cai, X.Y. Tang, J.M. Zhou, Firefly luciferase complementation imaging assay for protein-protein interactions in plants, Plant Physiol. 146 (2008) 368-376.

[41]

J.Y. Zhao, Z.W. Lu, Y. Sun, Z.W. Fang, J. Chen, Y.B. Zhou, M. Chen, Y.Z. Ma, Z.S. Xu, D.H. Min, The ankyrin-repeat gene GmANK114 confers drought and salt tolerance in Arabidopsis and soybean, Front. Plant Sci. 11 (2020) 584167.

[42]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 method, Methods 25 (2001) 402-408.

[43]

B. Li, Y. Liu, X.Y. Cui, J.D. Fu, Y.B. Zhou, W.J. Zheng, J.H. Lan, L.G. Jin, M. Chen, Y.Z. Ma, Z.S. Xu, D.H. Min, Genome-wide characterization and expression analysis of soybean TGA transcription factors identified a novel TGA gene involved in drought and salt tolerance, Front. Plant Sci. 10 (2019) 549.

[44]

Z.F. Li, L.X. Zhang, Y.W. Yu, R.D. Quan, Z.J. Zhang, H.W. Zhang, R.F. Huang, The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis, Plant J. 68 (2011) 88-99.

[45]

D.D. Rio, A.J. Stewart, N. Pellegrini, A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress, Nutr. Metab. Carbiovasc. Dis. 15 (2005) 316-328.

[46]

D. Tsikas, Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges, Anal. Biochem. 524 (2017) 13-30.

[47]

S. Rehman, T. Mahmood, Functional role of DREB and ERF transcription factors: regulating stress-responsive network in plants, Acta Physiol. Plant. 37 (2015) 178.

[48]

N.A. Eckardt, Dreb duo defines distinct drought and cold response pathways, Plant Cell 31 (2019) 1196-1197.

[49]

M. Chen, Q.Y. Wang, X.G. Cheng, Z.S. Xu, L.C. Li, X.G. Ye, L.Q. Xia, Y.Z. Ma, GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants, Biochem. Biophys. Res. Commun. 353 (2007) 299-305.

[50]

Y. Sakuma, K. Maruyama, Y. Osakabe, F. Qin, M. Seki, K. Shinozaki, K. Yamaguchi-Shinozaki, Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression, Plant Cell 18 (2006) 1292-1309.

[51]

H.M. Zhang, J.H. Zhu, Z.H. Gong, J.K. Zhu, Abiotic stress responses in plants, Nat. Rev. Genet. (2021).

[52]

R. Mittler, S. Vanderauwera, M. Gollery, F. Van Breusegem, Reactive oxygen gene network of plants, Trends Plant Sci. 9 (2004) 490-498.

[53]

J.S. Qi, C.P. Song, B.S. Wang, J.M. Zhou, J. Kangasjarvi, J.K. Zhu, Z.H. Gong, Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack, J. Integr. Plant Biol. 60 (2018) 805-826.

[54]

Y. Wang, R. Branicky, A. Noe, S. Hekimi, Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling, J. Cell Biol. 217 (2018) 1915-1928.

[55]

S. Vandenabeele, S. Vanderauwera, M. Vuylsteke, S. Rombauts, C. Langebartels, H.K. Seidlitz, M. Zabeau, M. van Montagu, D. Inzé, F. van Breusegem, Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana, Plant J. 39 (2004) 45-58.

[56]

X.M. Zhou, Y. Xiang, C.L. Li, G.H. Yu, Modulatory role of reactive oxygen species in root development in model plant of Arabidopsis thaliana, Front. Plant Sci. 11 (2020) 485932.

[57]
N. Wang, W.X. Zhang, M.Y. Qin, S. Li, M. Qiao, Z.H. Liu, F.N. Xiang, Plant Cell Physiol. 58 (2017) 1764–1776.
[58]

L.S. Meng, Z.B. Wang, S.Q. Yao, A. Liu, The ARF2-ANT-COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis, J. Cell Sci. 128 (2015) 3922-3932.

[59]

W.W. Guo, R.W. Ward, M.F. Thomashow, Characterization of a cold-regulated wheat gene related to Arabidopsis cor47, Plant Physiol. 100 (1992) 915-922.

[60]

E.S. Chung, C.W. Cho, K.M. Kim, J.H. Lee, Ectopic expression of soybean KS-type dehydrin, SLTI66 and SLTI629 conferred tolerance against osmotic and metal stresses of Escherichia coli and Arabidopsis, J. Plant Biotechnol. 36 (2009) 38-44.

[61]

H.F. Shi, X.Y. He, Y.J. Zhao, S.Y. Lu, Z.F. Guo, Constitutive expression of a group 3 LEA protein from Medicago falcata (MfLEA3) increases cold and drought tolerance in transgenic tobacco, Plant Cell Rep. 39 (2020) 851-860.

[62]

Z.J. Feng, X.Y. Cui, X.Y. Cui, M. Chen, G.X. Yang, Y.Z. Ma, G.Y. He, Z.S. Xu, The soybean GmDi19-5 interacts with GmLEA3.1 and increases sensitivity of transgenic plants to abiotic stresses, Front. Plant Sci. 6 (2015) 179.

[63]

J. Mizoi, T. Ohori, T. Moriwaki, S. Kidokoro, D. Todaka, K. Maruyama, K. Kusakabe, Y. Osakabe, K. Shinozaki, K. Yamaguchi-Shinozaki, GmDREB2A;2, a canonical dehydration-responsive element-binding protein2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression, Plant Physiol. 161 (2013) 346–361.

[64]

P.K. Agarwal, K. Gupta, S. Lopato, P. Agarwal, Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance, J. Exp. Bot. 68 (2017) 2135–2148.

[65]

Y.B. Zhou, M. Chen, J.K. Guo, Y.X. Wang, D.H. Min, Q.Y. Jiang, H.T. Ji, C.Y. Huang, W. Wei, H.J. Xu, X. Chen, L.C. Li, Z.S. Xu, X.G. Cheng, C.X. Wang, C.S. Wang, Y.Z. Ma, Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field, J. Exp. Bot. 71 (2020) 1842–1857.

[66]

S.J. Gilmour, S.G. Fowler, M.F. Thomashow, Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities, Plant Mol. Biol. 54 (2004) 767-781.

[67]

S. Park, C.M. Lee, C.J. Doherty, S.J. Gilmour, Y. Kim, M.F. Thomashow, Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network, Plant J. 82 (2015) 193-207.

[68]

C.Z. Zhao, Z.J. Zhang, S.J. Xie, T. Si, Y.Y. Li, J.K. Zhu, Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis, Plant Physiol. 171 (2016) 2744-2759.

[69]

Y.N. Wang, Y. Wang, Z.G. Meng, Y.X. Wei, X.M. Du, C.Z. Liang, R. Zhang, Elevation of GhDREB1B transcription by a copy number variant significantly improves chilling tolerance in cotton, Planta 254 (2021) 42.

The Crop Journal
Pages 1014-1025
Cite this article:
Zhao J, Zheng L, Wei J, et al. The soybean PLATZ transcription factor GmPLATZ17 suppresses drought tolerance by interfering with stress-associated gene regulation of GmDREB5. The Crop Journal, 2022, 10(4): 1014-1025. https://doi.org/10.1016/j.cj.2022.03.009

341

Views

6

Downloads

24

Crossref

24

Web of Science

23

Scopus

1

CSCD

Altmetrics

Received: 06 November 2021
Revised: 18 January 2022
Accepted: 22 March 2022
Published: 18 April 2022
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return