AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Genetic mechanism of heterosis for rice milling and appearance quality in an elite rice hybrid

Hui Youa,b,1Sundus Zafarc,1Fan ZhangbShuangbing ZhucKai ChencCongcong ShencXiuqin ZhaobWenzhong Zhanga( )Jianlong Xub,c,d( )
Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
Hainan Yazhou Bay Seed Lab/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China

1 These authors have contributed equally to this work.

Show Author Information

Abstract

Development of hybrid rice with high yield and grain quality is a goal of rice breeding. To investigate the genetic mechanism of heterosis for rice milling and appearance quality in indica/xian rice, QTL mapping was conducted using 1061 recombinant inbred lines (RILs) derived from a cross of the xian rice cultivars Quan9311B (Q9311B) and Wu-shan-si-miao (WSSM), and a backcross F1 (BC1F1) population developed by crossing the RILs with Quan9311A (Q9311A), combined with phenotyping in two environments. The F1 hybrid (Q9311A × WSSM) showed various degrees of heterosis for milling and appearance quality. A total of 142 main-effect QTL (M-QTL) and 407 pairs of epistatic QTL (E-QTL) were identified for five milling and appearance quality traits and grain yield per plant (GYP) in the RIL, BC1F1 and mid-parental heterosis (HMP) populations. Differential detection of QTL in three populations revealed that most additive loci detected in the RILs did not show heterotic effects, but some of them did contribute to BC1F1 trait performance. Unlike heterosis of GYP, single-locus overdominance and epistasis were the main contributors to heterosis for milling and appearance quality. Epistasis contributed more to the heterosis for milling quality than to that for appearance quality. Three (four) QTL regions harboring opposite (consistent) directions of favorable allele effects for GYP and grain quality were identified, indicating the presence of partial genetic overlaps between GYP and grain quality. Three strategies are proposed to develop hybrid rice with high yield and good grain quality: 1) pyramiding favorable alleles with consistent directions of gene effects for GYP and grain quality at the M-QTL on different chromosomes; 2) introgressing favorable alleles for GYP and grain quality into the parents and then pyramiding and fixing these additive effects in hybrids; and 3) pyramiding overdominant and dominant loci and minimizing or eliminating underdominant loci from the parents.

References

[1]
R.M. Pereira, C.N. Lange, T. Pedron, F.P. Paniz, G.S.P. Oliveira, H.P. Masuda, B.L. Batista, Lead in rice grain, in: A.C. de Oliveira, C. Pegoraro, V.E. Viana (Eds.), The Future of Rice Demand: Quality Beyond Productivity, Cham, Switzerland, 2020, pp. 93–131.
[2]
N.D. Cruz, G.S. Khush, Rice grain quality evaluation procedures, in: R.K. Singh, U.S. Singh, G.S. Khush (Eds.), Aromatic Rices, Oxford and IBH, New Delhi, India, 2000, pp. 15–28.
[3]

Y. Chen, M. Wang, P.B.F. Ouwerkerk, Molecular and environmental factors determining grain quality in rice, Food Energy Secur. 1 (2012) 111-132.

[4]

X.J. Qiu, Z.H. Yuan, K. Chen, B. Du, W.J. He, L.W. Yang, J.L. Xu, D.Y. Xing, W.K. Lü, Genetic dissection of grain chalkiness in indica mini-core germplasm using genome-wide association method, Acta Agron. Sin. 41 (2015) 1007-1016 (in Chinese with English abstract).

[5]

Z.F. Li, J.M. Wan, J.F. Xia, H.Q. Zhai, Mapping quantitative trait loci underlying appearance quality of rice grains (oryza sativa L.), Acta Genet. Sin. 30 (2003) 251-259.

[6]

Z.F. Li, J.M. Wan, J.F. Xia, H.Q. Zhai, H. Ikehashi, Identification of quantitative trait loci underlying milling quality of rice (oryza sativa) grains, Plant Breed. 123 (2004) 229-234.

[7]

H. Mao, S. Sun, J. Yao, C. Wang, S. Yu, C. Xu, X. Li, Q. Zhang, Linking differential domain functions of the GS3 protein to natural variation of grain size in rice, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 19579-19584.

[8]

X.J. Song, W. Huang, M. Shi, M.Z. Zhu, H.X. Lin, A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase, Nat. Genet. 39 (2007) 623-630.

[9]

J. Liu, J. Chen, X. Zheng, F. Wu, Q. Lin, Y. Heng, P. Tian, Z. Cheng, X. Yu, K. Zhou, X. Zhang, X. Guo, J. Wang, H. Wang, J. Wan, GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice, Nat. Plants 3 (2017) 17043.

[10]

Y. Li, C. Fan, Y. Xing, Y. Jiang, L. Luo, L. Sun, D. Shao, C. Xu, X. Li, J. Xiao, Y. He, Q. Zhang, Natural variation in GS5 plays an important role in regulating grain size and yield in rice, Nat. Genet. 43 (2011) 1266-1269.

[11]

X.J. Song, T. Kuroha, M. Ayano, T. Furuta, K. Nagai, N. Komeda, S. Segami, K. Miura, D. Ogawa, T. Kamura, T. Suzuki, T. Higashiyama, M. Yamasaki, H. Mori, Y. Inukai, J.Z. Wu, H. Kitano, H. Sakakibara, S.E. Jacobsen, M. Ashikari, Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 76-81.

[12]

Y. Wang, G. Xiong, J. Hu, L. Jiang, H. Yu, J. Xu, Y. Fang, L. Zeng, E. Xu, J. Xu, W. Ye, X. Meng, R. Liu, H. Chen, Y. Jing, Y. Wang, X. Zhu, J. Li, Q. Qian, Copy number variation at the GL7 locus contributes to grain size diversity in rice, Nat. Genet. 47 (2015) 944-948.

[13]

E. Wang, J. Wang, X. Zhu, W. Hao, L. Wang, Q. Li, L. Zhang, W. He, B. Lu, H. Lin, H. Ma, G. Zhang, Z. He, Control of rice grain-filling and yield by a gene with a potential signature of domestication, Nat. Genet. 40 (2008) 1370-1374.

[14]

Y. Li, C. Fan, Y. Xing, P. Yun, L. Luo, B. Yan, B. Peng, W. Xie, G. Wang, X. Li, J. Xiao, C. Xu, Y. He, Chalk5 encodes a vacuolar H(+)-translocating pyrophosphatase influencing grain chalkiness in rice, Nat. Genet. 46 (2014) 398-404.

[15]

H.G. Kang, S. Park, M. Matsuoka, G. An, White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB), Plant J. 42 (2005) 901-911.

[16]

Y. Wang, Y. Ren, X. Liu, L. Jiang, L. Chen, X. Han, M. Jin, S. Liu, F. Liu, J. Lv, K. Zhou, N. Su, Y. Bao, J. Wan, OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells, Plant J. 64 (2010) 812-824.

[17]

X. Han, Y. Wang, X. Liu, L. Jiang, Y. Ren, F. Liu, C. Peng, J. Li, X. Jin, F. Wu, J. Wang, X. Guo, X. Zhang, Z. Cheng, J. Wan, The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice, J. Exp. Bot. 63 (2012) 121-130.

[18]

R. Matsushima, M. Maekawa, M. Kusano, H. Kondo, N. Fujita, Y. Kawagoe, W. Sakamoto, Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm, Plant Physiol. 164 (2014) 623-636.

[19]

X. Liu, T. Guo, X. Wan, H. Wang, M. Zhu, A. Li, N. Su, Y. Shen, B. Mao, H. Zhai, L. Mao, J. Wan, Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice, BMC Genomics 11 (2010) 730.

[20]

L. Zhou, L. Chen, L. Jiang, W. Zhang, L. Liu, X. Liu, Z. Zhao, S. Liu, L. Zhang, J. Wang, J. Wan, Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.), Theor. Appl. Genet. 118 (2009) 581-590.

[21]

T. Guo, X. Liu, X. Wan, J. Weng, S. Liu, X. Liu, M. Chen, J. Li, N. Su, F. Wu, Z. Cheng, X. Guo, C. Lei, J. Wang, L. Jiang, J. Wan, Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa), J. Integr. Plant Biol. 53 (2011) 598-607.

[22]

D. Ren, Y. Rao, L. Huang, Y. Leng, J. Hu, M. Lu, G. Zhang, L. Zhu, Z. Gao, G. Dong, L. Guo, Q. Qian, D. Zeng, Fine mapping identifies a new QTL for brown rice rate in rice (Oryza Sativa L.), Rice 9 (2016) 4.

[23]

J.A. Birchler, H. Yao, S. Chudalayandi, D. Vaiman, R.A. Veitia, Heterosis, Plant Cell 22 (2010) 2105-2112.

[24]

S.A. Goff, Q. Zhang, Heterosis in elite hybrid rice: speculation on the genetic and biochemical mechanisms, Curr. Opin. Plant Biol. 16 (2013) 221-227.

[25]

F. Hochholdinger, N. Hoecker, Towards the molecular basis of heterosis, Trends Plant Sci. 12 (2007) 427-432.

[26]

N. Bagheri, N. Jelodar, Heterosis and combining ability analysis for yield and related-yield traits in hybrid rice, Int. J. Biol. 2 (2010) 222.

[27]

L. Chen, Z. Zhao, X. Liu, L. Liu, L. Jiang, S. Liu, W. Zhang, Y. Wang, Y. Liu, J. Wan, Marker-assisted breeding of a photoperiod-sensitive male sterile japonica rice with high cross-compatibility with indica rice, Mol. Breed. 27 (2011) 247-258.

[28]

J.P. Hua, Y.Z. Xing, C.G. Xu, X.L. Sun, S.B. Yu, Q. Zhang, Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance, Genetics 162 (2002) 1885-1895.

[29]

Z. Li, S.R. Pinson, A.H. Paterson, W.D. Park, J.W. Stansel, Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population, Genetics 145 (1997) 1139-1148.

[30]

M.G. Murray, W.F. Thompson, Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res. 8 (1980) 4321-4325.

[31]

Y. Kawahara, M. de la Bastide, J.P. Hamilton, H. Kanamori, W.R. McCombie, S. Ouyang, D.C. Schwartz, T. Tanaka, J. Wu, S. Zhou, K.L. Childs, R.M. Davidson, H. Lin, L. Quesada-Ocampo, B. Vaillancourt, H. Sakai, S.S. Lee, J. Kim, H. Numa, T. Itoh, C.R. Buell, T. Matsumoto, Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data, Rice 6 (2013) 4.

[32]

H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics 25 (2009) 1754-1760.

[33]

M.A. DePristo, E. Banks, R. Poplin, K.V. Garimella, J.R. Maguire, C. Hartl, A.A. Philippakis, G. del Angel, M.A. Rivas, M. Hanna, A. McKenna, T.J. Fennell, A.M. Kernytsky, A.Y. Sivachenko, K. Cibulskis, S.B. Gabriel, D. Altshuler, M.J. Daly, A framework for variation discovery and genotyping using next-generation DNA sequencing data, Nat. Genet. 43 (2011) 491-498.

[34]

H. Sakai, S.S. Lee, T. Tanaka, H. Numa, J. Kim, Y. Kawahara, H. Wakimoto, C.C. Yang, M. Iwamoto, T. Abe, Y. Yamada, A. Muto, H. Inokuchi, T. Ikemura, T. Matsumoto, T. Sasaki, T. Itoh, Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics, Plant Cell Physiol. 54 (2013) e6.

[35]

L. Meng, H. Li, L. Zhang, J. Wang, QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations, Crop J. 3 (2015) 269-283.

[36]

A. Lariepe, B. Mangin, S. Jasson, V. Combes, F. Dumas, P. Jamin, C. Lariagon, D. Jolivot, D. Madur, J. Fiévet, A. Gallais, P. Dubreuil, A. Charcosset, L. Moreau, The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.), Genetics 190 (2012) 795-811.

[37]

J.W. van Ooijen, LOD significance thresholds for QTL analysis in experimental populations of diploid species, Heredity 83 (1999) 613-624.

[38]

H.W. Mei, L.J. Luo, C.S. Ying, Y.P. Wang, X.Q. Yu, L.B. Guo, A.H. Paterson, Z.K. Li, Gene actions of QTL affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations, Theor. Appl. Genet. 107 (2003) 89-101.

[39]

C.K. Kim, S.H. Chu, H.Y. Park, J. Seo, B. Kim, G. Lee, H.J. Koh, J.H. Chin, Identification of heterosis QTL for yield and yield-related traits in indica-japonica recombinant inbred lines of rice (Oryza sativa L.), Plant Breed. Biotechnol. 5 (2017) 371-389.

[40]

W. Wang, R. Mauleon, Z. Hu, D. Chebotarov, S. Tai, Z. Wu, M. Li, T. Zheng, R.R. Fuentes, F. Zhang, L. Mansueto, D. Copetti, M. Sanciangco, K.C. Palis, J. Xu, C. Sun, B. Fu, H. Zhang, Y. Gao, X. Zhao, F. Shen, X. Cui, H. Yu, Z. Li, M. Chen, J. Detras, Y. Zhou, X. Zhang, Y. Zhao, D. Kudrna, C. Wang, R. Li, B. Jia, J. Lu, X. He, Z. Dong, J. Xu, Y. Li, M. Wang, J. Shi, J. Li, D. Zhang, S. Lee, W. Hu, A. Poliakov, I. Dubchak, V.J. Ulat, F.N. Borja, J.R. Mendoza, J. Ali, J. Li, Q. Gao, Y. Niu, Z. Yue, M.E.B. Naredo, J. Talag, X. Wang, J. Li, X. Fang, Y. Yin, J.C. Glaszmann, J. Zhang, J. Li, R.S. Hamilton, R.A. Wing, J. Ruan, G. Zhang, C. Wei, N. Alexandrov, K.L. McNally, Z. Li, H. Leung, Genomic variation in 3,010 diverse accessions of Asian cultivated rice, Nature 557 (2018) 43-49.

[41]
F. de Mendiburu, Agricolae: statistical procedures for agricultural research, R package version 1, 2014.
[42]

D. Zeng, M. Yan, Y. Wang, X. Liu, Q. Qian, J. Li, Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of pre-mRNAs in rice (Oryza sativa L.), Plant Mol. Biol. 65 (2007) 501-509.

[43]

R. Xu, P. Duan, H. Yu, Z. Zhou, B. Zhang, R. Wang, J. Li, G. Zhang, S. Zhuang, J. Lyu, N. Li, T. Chai, Z. Tian, S. Yao, Y. Li, Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice, Mol. Plant 11 (2018) 860-873.

[44]

J. Wang, H. Xu, N. Li, F. Fan, L. Wang, Y. Zhu, S. Li, Artificial selection of Gn1a plays an important role in improving rice yields across different ecological regions, Rice 8 (2015) 37.

[45]

S. Wang, S. Li, Q. Liu, K. Wu, J. Zhang, S. Wang, Y. Wang, X. Chen, Y. Zhang, C. Gao, F. Wang, H. Huang, X. Fu, The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality, Nat. Genet. 47 (2015) 949-954.

[46]

S. Latha, D. Sharma, G.S. Sanghera, Combining ability and heterosis for grain yield and its component traits in rice (Oryza sativa L.), Not. Sci. Biol. 5 (2013) 90-97.

[47]

Z.K. Li, L.J. Luo, H.W. Mei, D.L. Wang, Q.Y. Shu, R. Tabien, D.B. Zhong, C.S. Ying, J.W. Stansel, G.S. Khush, A.H. Paterson, Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield, Genetics 158 (2001) 1737-1753.

[48]

C. Xiang, H. Zhang, H. Wang, S. Wei, B. Fu, J. Xia, Z. Li, Y. Gao, G. Ye, Dissection of heterosis for yield and related traits using populations derived from introgression lines in rice, Crop J. 4 (2016) 468-478.

[49]

S. Zhang, X. Huang, B. Han, Understanding the genetic basis of rice heterosis: advances and prospects, Crop J. 9 (2021) 688-692.

[50]

L. Li, X. He, H. Zhang, Z. Wang, C. Sun, T. Mou, X. Li, Y. Zhang, Z. Hu, Genomewide mapping reveals a combination of different genetic effects causing the genetic basis of heterosis in two elite rice hybrids, J. Genet. 94 (2015) 261-270.

[51]

A.E. Melchinger, H.F. Utz, H.P. Piepho, Z.B. Zeng, C.C. Schön, The role of epistasis in the manifestation of heterosis: a systems-oriented approach, Genetics 177 (2007) 1815-1825.

[52]

A. Wang, Q. Hou, L. Si, X. Huang, J. Luo, D. Lu, J. Zhu, Y. Shang, J. Miao, Y. Xie, Y. Wang, Q. Zhao, Q. Feng, C. Zhou, Y. Li, D. Fan, Y. Lu, Q. Tian, Z. Wang, B. Han, The PLATZ transcription factor GL6 affects grain length and number in rice, Plant Physiol. 180 (2019) 2077-2090.

[53]

W. Li, J. Wu, S. Weng, Y. Zhang, D. Zhang, C. Shi, Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice, Planta 232 (2010) 1383-1396.

[54]

Z.Y. Wang, Z.L. Wu, Y.Y. Xing, F.G. Zheng, M.M. Hong, Nucleotide sequence of rice waxy gene, Nucleic Acids Res. 18 (1990) 5898.

[55]

L. Sun, X. Li, Y. Fu, Z. Zhu, L. Tan, F. Liu, X. Sun, X. Sun, C. Sun, GS6, a member of the GRAS gene family, negatively regulates grain size in rice, J. Integr. Plant Biol. 55 (2013) 938-949.

[56]

J. Jiang, Q. Zhang, D. Hong, Correlation analysis among panicle angle and grain traits and qualitative characteristics in japonica rice (Oryza sativa L.), Acta Agric. Jiangxi 20 (2008) 1-4 (in Chinese with English abstract).

[57]

J. Zhang, T. Tong, P.M. Potcho, S. Huang, L. Ma, X. Tang, Nitrogen effects on yield, quality and physiological characteristics of giant rice, Agronomy 10 (2020) 1816.

[58]

J.C. Shannon, D.L. Garwood, C.D. Boyer, Genetics and physiology of starch development, Starch (2009) 23-82.

[59]

M. Gao, J. Wanat, P.S. Stinard, M.G. James, A.M. Myers, Characterization of dull1, a maize gene coding for a novel starch synthase, Plant Cell 10 (1998) 399-412.

[60]

Z. Hu, S.J. Lu, M.J. Wang, H. He, L. Sun, H. Wang, X.H. Liu, L. Jiang, J.L. Sun, X. Xin, W. Kong, C. Chu, H.W. Xue, J. Yang, X. Luo, J.X. Liu, A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice, Mol. Plant 11 (2018) 736-749.

[61]

S. Zhao, L. Zhao, F. Liu, Y. Wu, Z. Zhu, C. Sun, L. Tan, NARROW AND ROLLED LEAF 2 regulates leaf shape, male fertility, and seed size in rice, J. Integr. Plant Biol. 58 (2016) 983-996.

[62]

Q. Xu, W. Chen, Z. Xu, Relationship between grain yield and quality in rice germplasms grown across different growing areas, Breed. Sci. 65 (2015) 226-232.

[63]

W.K. Zheng, G.H. Chen, Q.M. Zhou, J.L. Wang, On appearance and correlation of rice quality characters in hybrids by two-line method, J. Hunan Agric. Univ. 30 (2004) 313-315 (in Chinese with English abstract).

[64]

H. Xu, W. He, L. Zhou, K. Liu, X. Yang, A. You, Rice quality evaluating and key quality genes genotyping of rice germplasm resources from Africa and Brazil, Mol. Plant Breed. 19 (2021) 5891-5898 (in Chinese with English abstract).

[65]

Z. Li, L. Coffey, J. Garfin, N.D. Miller, M.R. White, E.P. Spalding, N. de Leon, S.M. Kaeppler, P.S. Schnable, N.M. Springer, C.N. Hirsch, L. Lukens, Genotype-by-environment interactions affecting heterosis in maize, PLoS ONE 13 (2018) e0191321.

[66]

L. Shang, Q. Liang, Y. Wang, Y. Zhao, K. Wang, J. Hua, Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton, Theor. Appl. Genet. 129 (2016) 1429-1446.

[67]

H. Singh, S.N. Sharma, R.S. Sain, Heterosis studies for yield and its components in bread wheat over environments, Hereditas 141 (2004) 106-114.

[68]

W. Yang, F. Zhang, S. Zafar, J. Wang, H. Lu, S. Naveed, J. Lou, J. Xu, Genetic dissection of heterosis of indicajaponica by introgression line, recombinant inbred line and their testcross populations, Sci. Rep. 11 (2021) 10265.

[69]

N. Fang, R. Xu, L. Huang, B. Zhang, P. Duan, N. Li, Y. Luo, Y. Li, SMALL GRAIN 11 controls grain size, grain number and grain yield in rice, Rice 9 (2016) 64.

[70]

P. Tian, J. Liu, C. Mou, C. Shi, H. Zhang, Z. Zhao, Q. Lin, J. Wang, J. Wang, X. Zhang, X. Guo, Z. Cheng, S. Zhu, Y. Ren, C. Lei, H. Wang, J. Wan, GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice, J. Integr. Plant Biol. 61 (2019) 1171-1185.

[71]

X. Li, S. Shi, Q. Tao, Y. Tao, J. Miao, X. Peng, C. Li, Z. Yang, Y. Zhou, G. Liang, OsGASR9 positively regulates grain size and yield in rice (Oryza sativa), Plant Sci. 286 (2019) 17-27.

[72]

X. Yang, Y. Ren, Y. Cai, M. Niu, Z. Feng, R. Jing, C. Mou, X. Liu, L. Xiao, X. Zhang, F. Wu, X. Guo, L. Jiang, J. Wan, Overexpression of OsbHLH107, a member of the basic helix-loop-helix transcription factor family, enhances grain size in rice (Oryza sativa L.), Rice 11 (2018) 41.

[73]

J. Chen, H. Gao, X.M. Zheng, M. Jin, J.F. Weng, J. Ma, Y. Ren, K. Zhou, Q. Wang, J. Wang, J.L. Wang, X. Zhang, Z. Cheng, C. Wu, H. Wang, J.M. Wan, An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice, Plant J. 83 (2015) 427-438.

[74]

T. Qin, P. Zhao, J. Sun, Y. Zhao, Y. Zhang, Q. Yang, W. Wang, Z. Chen, T. Mai, Y. Zou, G. Liu, W. Hao, Research progress of PPR proteins in RNA editing, stress response, plant growth and development, Front. Genet. 12 (2021) 765580.

[75]

J. Weng, S. Gu, X. Wan, H. Gao, T. Guo, N. Su, C. Lei, X. Zhang, Z. Cheng, X. Guo, J. Wang, L. Jiang, H. Zhai, J. Wan, Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight, Cell Res. 18 (2008) 1199-1209.

[76]

L. Wu, Y. Cui, Z. Xu, Q. Xu, Identification of multiple grain shape-related loci in rice using bulked segregant analysis with high-throughput sequencing, Front. Plant Sci. 11 (2020) 303.

[77]

A. Shomura, T. Izawa, K. Ebana, T. Ebitani, H. Kanegae, S. Konishi, M. Yano, Deletion in a gene associated with grain size increased yields during rice domestication, Nat. Genet. 40 (2008) 1023-1028.

[78]

S. Wang, K. Wu, Q. Yuan, X. Liu, Z. Liu, X. Lin, R. Zeng, H. Zhu, G. Dong, Q. Qian, G. Zhang, X. Fu, Control of grain size, shape and quality by OsSPL16 in rice, Nat. Genet. 44 (2012) 950-954.

[79]

L. Si, J. Chen, X. Huang, H. Gong, J. Luo, Q. Hou, T. Zhou, T. Lu, J. Zhu, Y. Shangguan, E. Chen, C. Gong, Q. Zhao, Y. Jing, Y. Zhao, Y. Li, L. Cui, D. Fan, Y. Lu, Q. Weng, Y. Wang, Q. Zhan, K. Liu, X. Wei, K. An, G. An, B. Han, OsSPL13 controls grain size in cultivated rice, Nat. Genet. 48 (2016) 447-456.

[80]

Y. Luo, Z. Zhu, N. Chen, B. Duan, P. Zhang, Grain types and related quality characteristics of rice in China, Chin. J. Rice Sci. 18 (2004) 135-139 (in Chinese with English abstract).

[81]

K.S. McKenzie, J.N. Rutger, Genetic analysis of amylose content, alkali spreading score, and grain dimensions in rice, Crop Sci. 23 (1983) 306-313.

The Crop Journal
Pages 1705-1716
Cite this article:
You H, Zafar S, Zhang F, et al. Genetic mechanism of heterosis for rice milling and appearance quality in an elite rice hybrid. The Crop Journal, 2022, 10(6): 1705-1716. https://doi.org/10.1016/j.cj.2022.05.001

308

Views

4

Downloads

6

Crossref

3

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 15 January 2022
Revised: 27 March 2022
Accepted: 09 May 2022
Published: 16 May 2022
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return