AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

HvWRKY2 acts as an immunity suppressor and targets HvCEBiP to regulate powdery mildew resistance in barley

Deshui Yua,b,c( )Renchun FanbLing ZhangbPengya Xueb,cLibing LiaoaMeizhen HubYanjun ChengbJine Lib,cTing QibShaojuan JingbQiuyun WangbArvind BhattaQian-Hua Shenb,c( )
Lushan Botanical Garden, Chinese Academy of Science, Jiujiang 332900, Jiangxi, China
State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Abstract

Plants use a sophisticated immune system to perceive pathogen infection and activate immune responses in a tightly controlled manner. In barley, HvWRKY2 acts as a repressor in barley disease resistance to the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). However, the molecular features of HvWRKY2 in its DNA-binding and repressor functions, as well as its target genes, are uncharacterized. We show that the W-box binding of HvWRKY2 requires an intact WRKY domain and an upstream sequence of ~75 amino acids, and the HvWRKY2 W-box binding activity is linked to its repressor function in disease resistance. Chromatin immunoprecipitation (ChIP)-seq analysis identified HvCEBiP, a putative chitin receptor gene, as a target gene of HvWRKY2 in overexpressing transgenic barley plants. ChIP-qPCR and Electrophoretic Mobility Shift Assay (EMSA) verified the direct binding of HvWRKY2 to a W-box-containing sequence in the HvCEBiP promoter. HvCEBiP positively regulates resistance against Bgh in barley. Our findings suggest that HvWRKY2 represses barley basal immunity by directly targeting pathogen-associated molecular pattern (PAMP) recognition receptor genes, suggesting that HvCEBiP and likely chitin signaling function in barley PAMP-triggered immune responses to Bgh infection.

References

[1]

W. Wang, B. Feng, J.M. Zhou, D. Tang, Plant immune signaling: advancing on two frontiers, J. Integr. Plant Biol. 62 (2020) 2–24.

[2]

A.R. Bentham, J.C. de la Concepcion, N. Mukhi, R. Zdrzalek, M. Draeger, D. Gorenkin, R.K. Hughes, M.J. Banfield, A molecular roadmap to the plant immune system, J. Biol. Chem. 295 (2020) 14916–14935.

[3]

J.D. Jones, J.L. Dangl, The plant immune system, Nature 444 (2006) 323–329.

[4]

D. Tang, G. Wang, J.M. Zhou, Receptor kinases in plant-pathogen interactions: more than pattern recognition, Plant Cell 29 (2017) 618–637.

[5]

C. Zipfel, Plant pattern-recognition receptors, Trends Immunol. 35 (2014) 345–351.

[6]

Y. Wu, J. Zhou, Receptor-like kinases in plant innate immunity, J. Integr. Plant Biol. 55 (2013) 1271–1286.

[7]

C. Zipfel, Early molecular events in PAMP-triggered immunity, Curr. Opin. Plant Biol. 12 (2009) 414–420.

[8]

X.F. Xin, B. Kvitko, S.Y. He, Pseudomonas syringae: what it takes to be a pathogen, Nat. Rev. Microbiol. 16 (2018) 316–328.

[9]

H. Cui, K. Tsuda, J.E. Parker, Effector-triggered immunity: from pathogen perception to robust defense, Annu. Rev. Plant Biol. 66 (2015) 487–511.

[10]

S.T. Chisholm, G. Coaker, B. Day, B.J. Staskawicz, Host-microbe interactions: shaping the evolution of the plant immune response, Cell 124 (2006) 803–814.

[11]

M. Yuan, B.P.M. Ngou, P. Ding, X.F. Xin, PTI-ETI crosstalk: an integrative view of plant immunity, Curr. Opin. Plant Biol. 62 (2021) 102030.

[12]

D.E. Cook, C.H. Mesarich, B.P. Thomma, Understanding plant immunity as a surveillance system to detect invasion, Annu. Rev. Phytopathol. 53 (2015) 541–563.

[13]

K. Tsuda, F. Katagiri, Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity, Curr. Opin. Plant Biol. 13 (2010) 459–465.

[14]

M. Chang, H. Chen, F. Liu, Z.Q. Fu, PTI and ETI: convergent pathways with diverse elicitors, Trends Plant Sci. 27 (2022) 113–115.

[15]

B.P.M. Ngou, H.K. Ahn, P. Ding, J.D.G. Jones, Mutual potentiation of plant immunity by cell-surface and intracellular receptors, Nature 592 (2021) 110–115.

[16]

R.N. Pruitt, F. Locci, F. Wanke, L. Zhang, S.C. Saile, A. Joe, D. Karelina, C. Hua, K. Frohlich, W.L. Wan, M. Hu, S. Rao, S.C. Stolze, A. Harzen, A.A. Gust, K. Harter, M. Joosten, B. Thomma, J.M. Zhou, J.L. Dangl, D. Weigel, H. Nakagami, C. Oecking, F.E. Kasmi, J.E. Parker, T. Nurnberger, The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity, Nature 598 (2021) 495–499.

[17]

H. Tian, Z. Wu, S. Chen, K. Ao, W. Huang, H. Yaghmaiean, T. Sun, F. Xu, Y. Zhang, S. Wang, X. Li, Y. Zhang, Activation of TIR signalling boosts pattern-triggered immunity, Nature 598 (2021) 500–503.

[18]

Z. Wu, L. Tian, X. Liu, Y. Zhang, X. Li, TIR signal promotes interactions between lipase-like proteins and ADR1-L1 receptor and ADR1-L1 oligomerization, Plant Physiol. 187 (2021) 681–686.

[19]

N. Shibuya, E. Minami, Oligosaccharide signalling for defence responses in plant, Physiol. Mol. Plant P. 59 (2001) 223–233.

[20]

B.Q. Gong, F.Z. Wang, J.F. Li, Hide-and-seek: chitin-triggered plant immunity and fungal counterstrategies, Trends Plant Sci. 25 (2020) 805–816.

[21]

H. Kaku, Y. Nishizawa, N. Ishii-Minami, C. Akimoto-Tomiyama, N. Dohmae, K. Takio, E. Minami, N. Shibuya, Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 11086–11091.

[22]

T. Shimizu, T. Nakano, D. Takamizawa, Y. Desaki, N. Ishii-Minami, Y. Nishizawa, E. Minami, K. Okada, H. Yamane, H. Kaku, N. Shibuya, Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice, Plant J. 64 (2010) 204–214.

[23]

Y. Ao, Z. Li, D. Feng, F. Xiong, J. Liu, J.F. Li, M. Wang, J. Wang, B. Liu, H.B. Wang, OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity, Plant J. 80 (2014) 1072–1084.

[24]

Y. Kouzai, S. Mochizuki, K. Nakajima, Y. Desaki, M. Hayafune, H. Miyazaki, N. Yokotani, K. Ozawa, E. Minami, H. Kaku, N. Shibuya, Y. Nishizawa, Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice, Mol. Plant-Microbe Interact. 27 (2014) 975–982.

[25]

Y. Kouzai, K. Nakajima, M. Hayafune, K. Ozawa, H. Kaku, N. Shibuya, E. Minami, Y. Nishizawa, CEBiP is the major chitin oligomer-binding protein in rice and plays a main role in the perception of chitin oligomers, Plant Mol. Biol. 84 (2014) 519–528.

[26]

S. Tanaka, A. Ichikawa, K. Yamada, G. Tsuji, T. Nishiuchi, M. Mori, H. Koga, Y. Nishizawa, R. O'Connell, Y. Kubo, HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae, BMC Plant Biol. 10 (2010) 288.

[27]

S.P. Pandey, I.E. Somssich, The role of WRKY transcription factors in plant immunity, Plant Physiol. 150 (2009) 1648–1655.

[28]

T. Eulgem, I.E. Somssich, Networks of WRKY transcription factors in defense signaling, Curr. Opin. Plant Biol. 10 (2007) 366–371.

[29]

T. Eulgem, Dissecting the WRKY web of plant defense regulators, PLoS Pathog. 2 (2006) e126.

[30]

B. Ulker, I.E. Somssich, WRKY transcription factors: from DNA binding towards biological function, Curr. Opin. Plant Biol. 7 (2004) 491–498.

[31]

T. Eulgem, P.J. Rushton, S. Robatzek, I.E. Somssich, The WRKY superfamily of plant transcription factors, Trends Plant Sci. 5 (2000) 199–206.

[32]

Y.P. Xu, H. Xu, B. Wang, X.D. Su, Crystal structures of N-terminal WRKY transcription factors and DNA complexes, Protein Cell 11 (2020) 208–213.

[33]

P.J. Rushton, I.E. Somssich, P. Ringler, Q.J. Shen, WRKY transcription factors, Trends Plant Sci. 15 (2010) 247–258.

[34]

K.L. Wu, Z.J. Guo, H.H. Wang, J. Li, The WRKY family of transcription factors in rice and Arabidopsis and their origins, DNA Res. 12 (2005) 9–26.

[35]

T. Eulgem, P.J. Rushton, E. Schmelzer, K. Hahlbrock, I.E. Somssich, Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors, EMBO J. 18 (1999) 4689–4699.

[36]

P.J. Rushton, J.T. Torres, M. Parniske, P. Wernert, K. Hahlbrock, I.E. Somssich, Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes, EMBO J. 15 (1996) 5690–5700.

[37]

K. Tsuda, I.E. Somssich, Transcriptional networks in plant immunity, New Phytol. 206 (2015) 932–947.

[38]

R.P. Birkenbihl, B. Kracher, M. Roccaro, I.E. Somssich, Induced genome-wide binding of three Arabidopsis WRKY transcription factors during early MAMP-triggered immunity, Plant Cell 29 (2017) 20–38.

[39]

M. Schon, A. Toller, C. Diezel, C. Roth, L. Westphal, M. Wiermer, I.E. Somssich, Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4, Mol. Plant-Microbe Interact. 26 (2013) 758–767.

[40]

S.P. Pandey, M. Roccaro, M. Schon, E. Logemann, I.E. Somssich, Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis, Plant J. 64 (2010) 912–923.

[41]

Q.H. Shen, Y. Saijo, S. Mauch, C. Biskup, S. Bieri, B. Keller, H. Seki, B. Ulker, I.E. Somssich, P. Schulze-Lefert, Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses, Science 315 (2007) 1098–1103.

[42]

X. Xu, C. Chen, B. Fan, Z. Chen, Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors, Plant Cell 18 (2006) 1310–1326.

[43]

Y. Peng, L.E. Bartley, X. Chen, C. Dardick, M. Chern, R. Ruan, P.E. Canlas, P.C. Ronald, OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice, Mol. Plant 1 (2008) 446–458.

[44]

J. Liu, X. Chen, X. Liang, X. Zhou, F. Yang, J. Liu, S.Y. He, Z. Guo, Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense, Plant Physiol. 171 (2016) 1427–1442.

[45]

T. Chujo, K. Miyamoto, T. Shimogawa, T. Shimizu, Y. Otake, N. Yokotani, Y. Nishizawa, N. Shibuya, H. Nojiri, H. Yamane, E. Minami, K. Okada, OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus, Plant Mol. Biol. 82 (2013) 23–37.

[46]

X. Han, L. Zhang, L. Zhao, P. Xue, T. Qi, C. Zhang, H. Yuan, L. Zhou, D. Wang, J. Qiu, Q.H. Shen, SnRK1 phosphorylates and destabilizes WRKY3 to enhance barley immunity to powdery mildew, Plant Commun. 1 (2020) 100083.

[47]

S. Bai, J. Liu, C. Chang, L. Zhang, T. Maekawa, Q. Wang, W. Xiao, Y. Liu, J. Chai, F.L. Takken, P. Schulze-Lefert, Q.H. Shen, Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance, PLoS Pathog. 8 (2012) e1002752.

[48]

S. Seeholzer, T. Tsuchimatsu, T. Jordan, S. Bieri, S. Pajonk, W. Yang, A. Jahoor, K.K. Shimizu, B. Keller, P. Schulze-Lefert, Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection, Mol. Plant-Microbe Interact. 23 (2010) 497–509.

[49]

C. Chang, D. Yu, J. Jiao, S. Jing, P. Schulze-Lefert, Q.H. Shen, Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling, Plant Cell 25 (2013) 1158–1173.

[50]

J.G. Bartlett, S.C. Alves, M. Smedley, J.W. Snape, W.A. Harwood, High-throughput Agrobacterium-mediated barley transformation, Plant Methods 4 (2008) 22.

[51]

D. Yu, L. Liao, Y. Zhang, K. Xu, J. Zhang, K. Liu, X. Li, G. Tan, J. Zheng, Y. He, C. Xu, J. Zhao, B. Fu, J. Xie, J. Mao, C. Li, Development of a Gateway-compatible pCAMBIA binary vector for RNAi-mediated gene knockdown in plants, Plasmid 98 (2018) 52–55.

[52]

J. Zhang, D. Yu, Y. Zhang, K. Liu, K. Xu, F. Zhang, J. Wang, G. Tan, X. Nie, Q. Ji, L. Zhao, C. Li, Vacuum and co-cultivation agroinfiltration of (germinated) seeds results in Tobacco rattle virus (trv) mediated whole-plant virus-induced gene silencing (vigs) in wheat and maize, Front. Plant Sci. 8 (2017) 393.

[53]

T. Wang, C. Chang, C. Gu, S. Tang, Q. Xie, Q.H. Shen, An E3 ligase affects the NLR receptor stability and immunity to powdery mildew, Plant Physiol. 172 (2016) 2504–2515.

[54]

J. Liu, X. Cheng, D. Liu, W. Xu, R. Wise, Q.H. Shen, The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling, PLoS Genet. 10 (2014) e1004755.

[55]

D. Yu, L. Liao, J. Zhang, Y. Zhang, K. Xu, K. Liu, X. Li, G. Tan, R. Chen, Y. Wang, X. Liu, X. Zhang, X. Han, Z. Wei, C. Li, A novel, easy and rapid method for constructing yeast two-hybrid vectors using In-Fusion technology, BioTechniques 64 (2018) 219–224.

[56]

M. Roccaro, I.E. Somssich, Chromatin immunoprecipitation to identify global targets of WRKY transcription factor family members involved in plant immunity, Methods Mol. Biol. 712 (2011) 45–58.

[57]

S. Guo, Y. Xu, H. Liu, Z. Mao, C. Zhang, Y. Ma, Q. Zhang, Z. Meng, K. Chong, The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14, Nat. Commun. 4 (2013) 1566.

[58]

W. Wei, J. Huang, Y.J. Hao, H.F. Zou, H.W. Wang, J.Y. Zhao, X.Y. Liu, W.K. Zhang, B. Ma, J.S. Zhang, S.Y. Chen, Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants, PLoS ONE 4 (2009) e7209.

[59]

S. de Pater, V. Greco, K. Pham, J. Memelink, J. Kijne, Characterization of a zinc-dependent transcriptional activator from Arabidopsis, Nucleic Acids Res. 24 (1996) 4624–4631.

[60]

Q.H. Shen, F. Zhou, S. Bieri, T. Haizel, K. Shirasu, P. Schulze-Lefert, Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus, Plant Cell 15 (2003) 732–744.

[61]

D. Douchkov, D. Nowara, U. Zierold, P. Schweizer, A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells, Mol. Plant-Microbe Interact. 18 (2005) 755–761.

[62]

F. Delplace, C. Huard-Chauveau, R. Berthome, D. Roby, Network organization of the plant immune system: from pathogen perception to robust defense induction, Plant J. 109 (2022) 447–470.

[63]

X. Yu, B. Li, G.J. Jang, S. Jiang, D. Jiang, J.C. Jang, S.H. Wu, L. Shan, P. He, Orchestration of processing body dynamics and mRNA decay in Arabidopsis immunity, Cell Rep. 28 (2019) 2194–2205.

[64]

C. Chang, L. Zhang, Q.H. Shen, Partitioning, repressing and derepressing: dynamic regulations in MLA immune receptor triggered defense signaling, Front. Plant Sci. 4 (2013) 396.

[65]

K. Maeo, S. Hayashi, H. Kojima-Suzuki, A. Morikami, K. Nakamura, Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins, Biosci. Biotechnol. Biochem. 65 (2001) 2428–2436.

[66]

K. Yamasaki, T. Kigawa, S. Watanabe, M. Inoue, T. Yamasaki, M. Seki, K. Shinozaki, S. Yokoyama, Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor, J. Biol. Chem. 287 (2012) 7683–7691.

[67]

M.R. Duan, J. Nan, Y.H. Liang, P. Mao, L. Lu, L. Li, C. Wei, L. Lai, Y. Li, X.D. Su, DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein, Nucleic Acids Res. 35 (2007) 1145–1154.

[68]

K. Yamasaki, T. Kigawa, M. Inoue, M. Tateno, T. Yamasaki, T. Yabuki, M. Aoki, E. Seki, T. Matsuda, Y. Tomo, N. Hayami, T. Terada, M. Shirouzu, A. Tanaka, M. Seki, K. Shinozaki, S. Yokoyama, Solution structure of an Arabidopsis WRKY DNA binding domain, Plant Cell 17 (2005) 944–956.

[69]

S. Ishiguro, K. Nakamura, Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato, Mol. Gen. Genet. 244 (1994) 563–571.

[70]

Y. Kawano, K. Shimamoto, Early signaling network in rice PRR-mediated and R-mediated immunity, Curr. Opin. Plant Biol. 16 (2013) 496–504.

[71]

A. Akamatsu, H.L. Wong, M. Fujiwara, J. Okuda, K. Nishide, K. Uno, K. Imai, K. Umemura, T. Kawasaki, Y. Kawano, K. Shimamoto, An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity, Cell Host Microbe 13 (2013) 465–476.

[72]

K. Yamaguchi, K. Yamada, K. Ishikawa, S. Yoshimura, N. Hayashi, K. Uchihashi, N. Ishihama, M. Kishi-Kaboshi, A. Takahashi, S. Tsuge, A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity, Cell Host Microbe 13 (2013) 347–357.

[73]

K. Kishimoto, Y. Kouzai, H. Kaku, N. Shibuya, E. Minami, Y. Nishizawa, Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice, Plant J. 64 (2010) 343–354.

[74]

C.O. Micali, U. Neumann, D. Grunewald, R. Panstruga, R. O'Connell, Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria, Cell Microbiol. 13 (2011) 210–226.

[75]

S. Karre, A. Kumar, D. Dhokane, A.C. Kushalappa, Metabolo-transcriptome profiling of barley reveals induction of chitin elicitor receptor kinase gene (HvCERK1) conferring resistance against Fusarium graminearum, Plant Mol. Biol. 93 (2017) 247–267.

[76]

A. Polonio, D. Fernandez-Ortuno, A. de Vicente, A. Perez-Garcia, A haustorial-expressed lytic polysaccharide monooxygenase from the cucurbit powdery mildew pathogen Podosphaera xanthii contributes to the suppression of chitin-triggered immunity, Mol. Plant Pathol. 22 (2021) 580–601.

The Crop Journal
Pages 99-107
Cite this article:
Yu D, Fan R, Zhang L, et al. HvWRKY2 acts as an immunity suppressor and targets HvCEBiP to regulate powdery mildew resistance in barley. The Crop Journal, 2023, 11(1): 99-107. https://doi.org/10.1016/j.cj.2022.05.010

316

Views

3

Downloads

2

Crossref

2

Web of Science

3

Scopus

1

CSCD

Altmetrics

Received: 29 January 2022
Revised: 17 April 2022
Accepted: 17 June 2022
Published: 03 July 2022
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return