AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Increased nitrogen use efficiency via amino acid remobilization from source to sink organs in Brassica napus

Guihong LiangaYingpeng HuabHaifei ChenaJinsong LuoaHongkun XiangaHaixing SongaZhenhua Zhanga( )
College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha 410128, Hunan, China
School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
Show Author Information

Abstract

Nitrogen (N) is an essential plant growth nutrient whose coordinated distribution from source to sink organs is crucial for seed development and overall crop yield. We compared high and low N use efficiency (NUE) Brassica napus (rapeseed) genotypes. Metabonomics and transcriptomics revealed that leaf senescence induced by N deficiency promoted amino acid allocation from older to younger leaves in the high-NUE genotype at the vegetative growth stage. Efficient source to sink remobilization of amino acids elevated the numbers of branches and pods per plant under a N-deficiency treatment during the reproductive stage. A 15N tracer experiment confirmed that more amino acids were partitioned into seeds from the silique wall during the pod stage in the high-NUE genotype, owing mainly to variation in genes involved in organic N transport and metabolism. We suggest that the greater amino acid source-to-sink allocation efficiency during various growth stages in the high-NUE genotype resulted in higher yield and NUE under N deficiency. These findings support the hypothesis that strong amino acid remobilization in rapeseed leads to high yield, NUE, and harvest index.

References

[1]

M. Perchlik, M. Tegeder, Leaf amino acid supply affects photosynthetic and plant nitrogen use efficiency under nitrogen stress, Plant Physiol. 178 (2018) 174–188.

[2]

Y. Ji, W. Huang, B. Wu, Z. Fang, X. Wang, D. Gibbs, The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa, J. Exp. Bot. 71 (2020) 4763–4777.

[3]

A. Mauceri, L. Bassolino, A. Lupini, F. Badeck, F. Rizza, M. Schiavi, L. Toppino, M.R. Abenavoli, G.L. Rotino, F. Sunseri, Genetic variation in eggplant for nitrogen use efficiency under contrasting NO3 supply, J. Integr. Plant Biol. 62 (2020) 487–508.

[4]

C.H. McAllister, P.H. Beatty, A.G. Good, Engineering nitrogen use efficient crop plants: the current status, Plant Biotechnol. J. 10 (2012) 1011–1025.

[5]

Y. Dellero, V. Clouet, N. Marnet, A. Pellizzaro, S. Dechaumet, M.F. Niogret, A. Bouchereau, N. Smirnoff, Leaf status and environmental signals jointly regulate proline metabolism in winter oilseed rape, J. Exp. Bot. 71 (2020) 2098–2111.

[6]

P. Malagoli, P. Laine, L. Rossato, A. Ourry, Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. Ⅱ. An 15N-labelling-based simulation model of N partitioning between vegetative and reproductive tissues, Ann. Bot. 95 (2005) 1187–1198.

[7]

J.C. Avice, P. Etienne, Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.), J. Exp. Bot. 65 (2014) 3813–3824.

[8]

W. Diepenbrock, Yield analysis of winter oilseed rape (Brassica napus L.): a review, Field Crops Res. 67 (2000) 35–49.

[9]

H. Liu, Q. Yang, C. Fan, X. Zhao, X. Wang, Y. Zhou, Transcriptomic basis of functional difference and coordination between seeds and the silique wall of Brassica napus during the seed-filling stage, Plant Sci. 233 (2015) 186–199.

[10]

R.T. Furbank, R. White, J.A. Palta, N.C. Turner, Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.): the role of pod wall, seed coat, and embryo, J. Exp. Bot. 55 (2004) 1687–1696.

[11]

L. Rossato, P. Lainé, A. Ourry, Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns, J. Exp. Bot. 52 (2001) 1655–1663.

[12]

S. Schiltz, N. Munier-Jolain, C. Jeudy, J. Burstin, C. Salon, Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling, Plant Physiol. 137 (2005) 1463–1473.

[13]

G. Xu, X. Fan, A.J. Miller, Plant nitrogen assimilation and use efficiency, Annu. Rev. Plant Biol. 63 (2012) 153–182.

[14]

L. Zhang, Q. Tan, R. Lee, A. Trethewy, Y.H. Lee, M. Tegeder, Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis, Plant Cell 22 (2010) 3603–3620.

[15]

J.P. Santiago, M. Tegeder, Connecting source with sink: the role of Arabidopsis AAP8 in phloem loading of amino acids, Plant Physiol. 171 (2016) 508–521.

[16]

M. Perchlik, M. Tegeder, Improving plant nitrogen use efficiency through alteration of amino acid transport processes, Plant Physiol. 175 (2017) 235–247.

[17]

V.J. Melino, M.A. Tester, M. Okamoto, Strategies for engineering improved nitrogen use efficiency in crop plants via redistribution and recycling of organic nitrogen, Curr. Opin. Biotechnol. 74 (2021) 263–269.

[18]

M. Tegeder, D. Rentsch, Uptake and partitioning of amino acids and peptides, Mol. Plant 3 (2010) 997–1011.

[19]

S.V. The, R. Snyder, M. Tegeder, Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency, Front. Plant Sci. 11 (2021) 628366.

[20]

A. Sanders, R. Collier, A. Trethewy, G. Gould, R. Sieker, M. Tegeder, AAP1 regulates import of amino acids into developing Arabidopsis embryos, Plant J. 59 (2009) 540–552.

[21]

L. Zhang, M.G. Garneau, R. Majumdar, J. Grant, M. Tegeder, Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids, Plant J. 81 (2015) 134–146.

[22]

B. Peng, H. Kong, Y. Li, L. Wang, M. Zhong, L. Sun, G. Gao, Q. Zhang, L. Luo, G. Wang, W. Xie, J. Chen, W. Yao, Y. Peng, L. Lei, X. Lian, J. Xiao, C. Xu, X. Li, Y. He, OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice, Nat. Commun. 5 (2014) 4847.

[23]

X. Jin, B. Feng, Z. Xu, X. Fan, J. liu, Q. Liu, P. Zhu, T. Wang, TaAAP6-3B, a regulator of grain protein content selected during wheat improvement, BMC Plant Biol. 18 (2018) 71.

[24]

S. Liu, D. Wang, Y. Mei, T. Xia, W. Xu, Y. Zhang, X. You, X. Zhang, L. Li, N.N. Wang, Overexpression of GmAAP6a enhances tolerance to low nitrogen and improves seed nitrogen status by optimizing amino acid partitioning in soybean, Plant Biotechnol. J. 18 (2020) 1749–1762.

[25]

W.B. Frommer, S. Hummel, M. Unseld, O. Ninnemann, Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 12036–12040.

[26]

U.Z. Hammes, E. Nielsen, L.A. Honaas, C.G. Taylor, D.P. Schachtman, AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis, Plant J. 48 (2006) 414–426.

[27]

H. Zhao, H. Ma, L.i. Yu, X. Wang, J. Zhao, T. Tuller, Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.), PLoS ONE 7 (2012) e49210.

[28]

L. Cheng, H.Y. Yuan, R. Ren, S.Q. Zhao, Y.P. Han, Q.Y. Zhou, D.X. Ke, Y.X. Wang, L. Wang, Genome-wide identification, classification, and expression analysis of amino acid transporter gene family in Glycine max, Front. Plant Sci. 7 (2016) 515.

[29]

H. Ma, X. Cao, S. Shi, S. Li, J. Gao, Y. Ma, Q. Zhao, Q. Chen, Genome-wide survey and expression analysis of the amino acid transporter superfamily in potato (Solanum tuberosum L.), Plant Physiol. Biochem. 107 (2016) 164–177.

[30]

Y.L. Han, H.X. Song, Q. Liao, Y. Yu, S.F. Jian, J.E. Lepo, Q. Liu, X.M. Rong, C. Tian, J. Zeng, C.Y. Guan, A.M. Ismail, Z.H. Zhang, Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus, Plant Physiol. 170 (2016) 1684–1698.

[31]

S. Jian, Q. Liao, H. Song, Q. Liu, J.E. Lepo, C. Guan, J. Zhang, A.M. Ismail, Z. Zhang, NRT1.1-related NH4+ toxicity is associated with a disturbed balance between NH4+ uptake and assimilation, Plant Physiol. 178 (2018) 1473–1488.

[32]

G. Liang, H. Song, Y. Xiao, Z. Zhang, Ammonium accumulation caused by reduced tonoplast V-ATPase activity in Arabidopsis thaliana, Int. J. Mol. Sci. 22 (2020) 2.

[33]

C. Wang, W. Zhang, Z. Li, Z. Li, Y. Bi, N.M. Crawford, Y. Wang, FIP1 plays an important role in nitrate signaling and regulates CIPK8 and CIPK23 expression in Arabidopsis, Front. Plant Sci. 9 (2018) 593.

[34]

A.A. Urquhart, K.W. Joy, Use of Phloem exudate technique in the study of amino acid transport in pea plants, Plant Physiol. 68 (1981) 750–754.

[35]

Y.P. Hua, T. Zhou, Q. Liao, H.X. Song, C.Y. Guan, Z.H. Zhang, Genomics-assisted identification and characterization of the genetic variants underlying differential nitrogen use efficiencies in allotetraploid rapeseed genotypes, G3-Genes Genomics Genet. 8 (2018) 2757–2771.

[36]

A. Maillard, P. Etienne, S. Diquélou, J. Trouverie, V. Billard, J.C. Yvin, A. Ourry, Nutrient deficiencies modify the ionomic composition of plant tissues: a focus on cross-talk between molybdenum and other nutrients in Brassica napus, J. Exp. Bot. 67 (2016) 5631–5641.

[37]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method, Methods 25 (2001) 402–408.

[38]

A. Ferrante, R. Savin, G.A. Slafer, Floret development of durum wheat in response to nitrogen availability, J. Exp. Bot. 61 (2010) 4351–4359.

[39]

M. Havé, A. Marmagne, F. Chardon, C. Masclaux-Daubresse, Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops, J. Exp. Bot. 68 (2017) 2513–2529.

[40]

A. Girondé, P. Etienne, J. Trouverie, A. Bouchereau, F. Le Cahérec, L. Leport, M. Orsel, M.F. Niogret, N. Nesi, D. Carole, F. Soulay, C. Masclaux-Daubresse, J.C. Avice, The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling, BMC Plant Biol. 15 (2015) 59.

[41]

C. Masclaux-Daubresse, F. Daniel-Vedele, J. Dechorgnat, F. Chardon, L. Gaufichon, A. Suzuki, Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture, Ann. Bot. 105 (2010) 1141–1157.

[42]

A. Soltabayeva, S. Srivastava, A. Kurmanbayeva, A. Bekturova, R. Fluhr, M. Sagi, Early senescence in older leaves of low nitrate-grown Atxdh1 uncovers a role for purine catabolism in N supply, Plant Physiol. 178 (2018) 1027–1044.

[43]

Y.Y. Wang, P.K. Hsu, Y.F. Tsay, Uptake, allocation and signaling of nitrate, Trends Plant Sci. 17 (2012) 458–467.

[44]

G. Liang, Z. Zhang, Reducing the nitrate content in vegetables through joint regulation of short-distance distribution and long-distance transport, Front. Plant Sci. 11 (2020) 1079.

[45]

J.Y. Li, Y.L. Fu, S.M. Pike, J. Bao, W. Tian, Y. Zhang, C.Z. Chen, Y. Zhang, H.M. Li, J. Huang, L.G. Li, J.I. Schroeder, W. Gassmann, J.M. Gong, The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance, Plant Cell 22 (2010) 1633–1646.

[46]

S.H. Lin, H.F. Kuo, G. Canivenc, C.S. Lin, M. Lepetit, P.K. Hsu, P. Tillard, H.L. Lin, Y.Y. Wang, C.B. Tsai, A. Gojon, Y.F. Tsay, Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport, Plant Cell 20 (2008) 2514–2528.

[47]

T. Hildebrandt, A. Nunes Nesi, W. Araújo, H.P. Braun, Amino acid catabolism in plants, Mol. Plant 8 (2015) 1563–1579.

[48]

A.J. Barneix, Physiology and biochemistry of source-regulated protein accumulation in the wheat grain, J. Plant Physiol. 164 (2007) 581–590.

[49]

C. Masclaux-Daubresse, Q. Chen, M. Havé, Regulation of nutrient recycling via autophagy, Curr. Opin. Plant Biol. 39 (2017) 8–17.

[50]

C. Diaz, T. Lemaître, A. Christ, M. Azzopardi, Y. Kato, F. Sato, J.F. Morot-Gaudry, F. Le Dily, C. Masclaux-Daubresse, Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition, Plant Physiol. 147 (2008) 1437–1449.

[51]

S.C. Fan, C.S. Lin, P.K. Hsu, S.H. Lin, Y.F. Tasy, The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate, Plant Cell 21 (2009) 2750–2761.

[52]

T. Zhou, C.P. Yue, J.Y. Huang, J.Q. Cui, Y. Liu, W.M. Wang, C. Tian, Y.P. Hua, Genome-wide identification of the amino acid permease genes and molecular characterization of their transcriptional responses to various nutrient stresses in allotetraploid rapeseed, BMC Plant Biol. 20 (2020) 151.

[53]

L. Rossato, C. le Dantec, P. Laine, A. Ourry, Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: identification, characterization and immunolocalization of a putative taproot storage glycoprotein, J. Exp. Bot. 53 (2002) 265–275.

[54]

H. Yang, M. Krebs, Y.D. Stierhof, U. Ludewig, Characterization of the putative amino acid transporter genes AtCAT2,3,4: The tonoplast localized AtCAT2 regulates soluble leaf amino acids, J. Plant Physiol. 171 (2014) 594–601.

[55]

A. Sato, T. Kimura, K. Hondo, M. Kawano-Kawada, T. Sekito, The vacuolar amino acid transport system is a novel, direct target of GATA transcription factors, Biosci. Biotechnol. Biochem. 24 (2021) 587–599.

[56]

T. Chahomchuen, K. Hondo, M. Ohsaki, T. Sekito, Y. Kakinuma, Evidence for Avt6 as a vacuolar exporter of acidic amino acids in Saccharomyces cerevisiae cells, J. Gen. Appl. Microbiol. 55 (2009) 409–417.

[57]

Y. Liu, H. Wang, Z. Jiang, W. Wang, R. Xu, Q. Wang, Z. Zhang, A. Li, Y. Liang, S. Ou, X. Liu, S. Cao, H. Tong, Y. Wang, F. Zhou, H. Liao, B. Hu, C. Chu, Genomic basis of geographical adaptation to soil nitrogen in rice, Nature 590 (2021) 600–605.

[58]

M. Tegeder, C. Masclaux-Daubresse, Source and sink mechanisms of nitrogen transport and use, New Phytol. 217 (2018) 35–53.

[59]

Y.L. Han, Q. Liao, Y. Yu, H.X. Song, Q. Liu, X.M. Rong, J.D. Gu, J.E. Lepo, C.Y. Guan, Z.H. Zhang, Nitrate reutilization mechanisms in the tonoplast of two Brassica napus genotypes with different nitrogen use efficiency, Acta Physiol. Plant. 37 (2015) 42.

The Crop Journal
Pages 119-131
Cite this article:
Liang G, Hua Y, Chen H, et al. Increased nitrogen use efficiency via amino acid remobilization from source to sink organs in Brassica napus. The Crop Journal, 2023, 11(1): 119-131. https://doi.org/10.1016/j.cj.2022.05.011

251

Views

10

Downloads

14

Crossref

11

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 24 February 2022
Revised: 28 March 2022
Accepted: 17 June 2022
Published: 03 July 2022
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return