PDF (1.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Identification and validation of major QTL for grain size and weight in bread wheat (Triticum aestivum L.)

Guangsi Jia,bZhibin XuaXiaoli FanaQiang ZhouaLiangen Chena,bQin Yua,bSimin Liaoa,bCheng Jianga,bBo Fenga()Tao Wanga,c()
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
University of Chinese Academy of Sciences, Beijing 100049, China
The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
Show Author Information

Abstract

Grain size and weight are key components of wheat yield. Exploitation of major underlying quantitative trait loci (QTL) can improve yield potential in wheat breeding. A recombinant inbred line (RIL) population was constructed to detect QTL for thousand-grain weight (TGW), grain length (GL) and grain width (GW) across eight environments. Genomic regions associated with grain size and grain weight were identified on chromosomes 4A and 6A using bulked segregant exome sequencing (BSE-Seq) analysis. After constructing genetic maps, six major QTL detected in at least four individual environments and in best linear unbiased estimator (BLUE) datasets, explained 7.50%–23.45% of the phenotypic variation. Except for QGl.cib-4A, the other five QTL were co-located in two regions, namely QTgw/Gw.cib-4A and QTgw/Gw/Gl.cib-6A. Interactions of these QTL were analyzed. Unlike QTgw/Gw/Gl.cib-6A, QTgw/Gw.cib-4A and QGl.cib-4A had no effect on grain number per spike (GNS). The QTL were validated in a second cross using Kompetitive Allele Specific PCR (KASP) markers. Since QTgw/Gw.cib-4A was probably a novel locus, it and the KASP markers reported here can be used in wheat breeding. TraesCS4A03G0191200 was predicted to be potential candidate gene for QTgw/Gw.cib-4A based on the sequence differences, spatiotemporal expression patterns, gene annotation and haplotype analysis. Our findings will be useful for fine mapping and for marker-assisted selection in wheat grain yield improvement.

References

[1]

P.R. Shewry, S.J. Hey, The contribution of wheat to human diet and health, Food Energy Secur. 4 (2015) 178–202.

[2]

H.Q. Ling, S. Zhao, D. Liu, J. Wang, H. Sun, C. Zhang, H. Fan, D. Li, L. Dong, Y. Tao, C. Gao, H. Wu, Y. Li, Y. Cui, X. Guo, S. Zheng, B. Wang, K. Yu, Q. Liang, W. Yang, X. Lou, J. Chen, M. Feng, J. Jian, X. Zhang, G. Luo, Y. Jiang, J. Liu, Z. Wang, Y. Sha, B. Zhang, H. Wu, D. Tang, Q. Shen, P. Xue, S. Zou, X. Wang, X. Liu, F. Wang, Y. Yang, X. An, Z. Dong, K. Zhang, X. Zhang, M.C. Luo, J. Dvorak, Y. Tong, J. Wang, H. Yang, Z. Li, D. Wang, A. Zhang, J. Wang, Draft genome of the wheat A-genome progenitor Triticum urartu, Nature 496 (2013) 87–90.

[3]

D.K. Ray, N.D. Mueller, P.C. West, J.A. Foley, J.P. Hart, Yield trends are insufficient to double global crop production by 2050, PLoS ONE 8 (2013) e66428.

[4]

D. Cristina, M. Ciuca, V. Mandea, C.P. Cornea, Assessment of 25 genes reported to influence thousand grain weight in winter wheat germplasm, Cereal Res. Commun. 50 (2022) 237–243.

[5]

T.L. Botwright, A.G. Condon, G.J. Rebetzke, R.A. Richards, Field evaluation of early vigour for genetic improvement of grain yield in wheat, Aust. J. Agric. Res. 53 (2002) 1137–1145.

[6]

N.A. Li, R. Xu, Y. Li, Molecular networks of seed size control in plants, Annu. Rev. Plant Biol. 70 (2019) 435–463.

[7]

Y. Zhang, J. Liu, X. Xia, Z. He, TaGSD1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat, Mol. Breed. 34 (2014) 1097–1107.

[8]

M. Hanif, F. Gao, J. Liu, W. Wen, Y. Zhang, A. Rasheed, X. Xia, Z. He, S. Cao, TaTGW6A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat, Mol. Breed. 36 (2015) 1.

[9]

Z. Su, C. Hao, L. Wang, Y. Dong, X. Zhang, Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.), Theor. Appl. Genet. 122 (2011) 211–223.

[10]

Y. Jiang, Q. Jiang, C. Hao, J. Hou, L. Wang, H. Zhang, S. Zhang, X. Chen, X. Zhang, A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis, Theor. Appl. Genet. 128 (2015) 131–143.

[11]

S.M. Bernard, A.L.B. Møller, G. Dionisio, T. Kichey, T.P. Jahn, F. Dubois, M. Baudo, M.S. Lopes, T. Tercé-Laforgue, C.H. Foyer, M.A.J. Parry, B.G. Forde, J.L. Araus, B. Hirel, J.K. Schjoerring, D.Z. Habash, Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.), Plant Mol. Biol. 67 (2008) 89–105.

[12]

J. Cao, Z. Xu, X. Fan, Q. Zhou, G. Ji, F. Wang, B.O. Feng, T. Wang, Genetic mapping and utilization analysis of stripe rust resistance genes in a Tibetan wheat (Triticum aestivum L.) landrace Qubaichun, Genet. Resour. Crop Evol. 67 (2020) 1765–1775.

[13]

M. Sajjad, X. Ma, S. Habibullah Khan, M. Shoaib, Y. Song, W. Yang, A. Zhang, D. Liu, TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat (Triticum aestivum L.), BMC Plant Biol. 17 (2017) 164.

[14]

C. Chang, J. Lu, H.P. Zhang, C.X. Ma, G. Sun, W. Ma, Copy number variation of cytokinin oxidase gene Tackx4 associated with grain weight and chlorophyll content of flag leaf in common wheat, PLoS ONE 10 (2015) e0145970.

[15]

Y. Guo, J. Sun, G. Zhang, Y. Wang, F. Kong, Y. Zhao, S. Li, Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits of TaGS1a in wheat, Field Crops Res. 154 (2013) 119–125.

[16]

X. Cheng, M. Xin, R. Xu, Z. Chen, W. Cai, L. Chai, H. Xu, L. Jia, Z. Feng, Z. Wang, H. Peng, Y. Yao, Z. Hu, W. Guo, Z. Ni, Q. Sun, A single amino acid substitution in STKc_GSK3 kinase conferring semispherical grains and its implications for the origin of Triticum sphaerococcum, Plant Cell 32 (2020) 923–934.

[17]

Z. Chen, X. Cheng, L. Chai, Z. Wang, R. Bian, J. Li, A. Zhao, M. Xin, W. Guo, Z. Hu, H. Peng, Y. Yao, Q. Sun, Z. Ni, Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.), Theor. Appl. Genet. 133 (2020) 149–162.

[18]

Y. Yang, A. Amo, D. Wei, Y. Chai, J. Zheng, P. Qiao, C. Cui, S. Lu, L. Chen, Y.G. Hu, Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat, Theor. Appl. Genet. 134 (2021) 3083–3109.

[19]

K. Isham, R. Wang, W. Zhao, J. Wheeler, N. Klassen, E. Akhunov, J. Chen, QTL mapping for grain yield and three yield components in a population derived from two high-yielding spring wheat cultivars, Theor. Appl. Genet. 134 (2021) 2079–2095.

[20]

P. Ramya, A. Chaubal, K. Kulkarni, L. Gupta, N. Kadoo, H.S. Dhaliwal, P. Chhuneja, M. Lagu, V. Gupta, QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.), J. Appl. Genet. 51 (2010) 421–429.

[21]

X. Qu, J. Liu, X. Xie, Q. Xu, H. Tang, Y. Mu, Z. Pu, Y. Li, J. Ma, Y. Gao, Q. Jiang, Y. Liu, G. Chen, J. Wang, P. Qi, A. Habib, Y. Wei, Y. Zheng, X. Lan, J. Ma, Genetic mapping and validation of loci for kernel-related traits in wheat (Triticum aestivum L.), Front. Plant Sci. 12 (2021) 667493.

[22]

M.S. Lopes, M.P. Reynolds, C.L. McIntyre, K.L. Mathews, M.R. Jalal Kamali, M.Mossad, Y. Feltaous, I.S.A. Tahir, R. Chatrath, F. Ogbonnaya, M. Baum, QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions, Theor. Appl. Genet. 126 (2013) 971–984.

[23]

G. Liu, L. Jia, L. Lu, D. Qin, J. Zhang, P. Guan, Z. Ni, Y. Yao, Q. Sun, H. Peng, Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat, Theor. Appl. Genet. 127 (2014) 2415–2432.

[24]

T. Ren, T. Fan, S. Chen, C. Li, Y. Chen, X. Ou, Q. Jiang, Z. Ren, F. Tan, P. Luo, C. Chen, Z. Li, Utilization of a Wheat55K SNP array-derived high-density genetic map for high-resolution mapping of quantitative trait loci for important kernel-related traits in common wheat, Theor. Appl. Genet. 134 (2021) 807–821.

[25]

L. Yan, F. Liang, H. Xu, X. Zhang, H. Zhai, Q. Sun, Z. Ni, Identification of QTL for grain size and shape on the D genome of natural and synthetic allohexaploid wheats with near-identical AABB genomes, Front. Plant Sci. 8 (2017) 1705.

[26]

Q. Su, X. Zhang, W. Zhang, N. Zhang, L. Song, L. Liu, X. Xue, G. Liu, J. Liu, D. Meng, L. Zhi, J. Ji, X. Zhao, C. Yang, Y. Tong, Z. Liu, J. Li, QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map, Front. Plant Sci. 9 (2018) 1484.

[27]

X. Duan, H. Yu, W. Ma, J. Sun, Y. Zhao, R. Yang, T. Ning, Q. Li, Q. Liu, T. Guo, M. Yan, J. Tian, J. Chen, A major and stable QTL controlling wheat thousand grain weight: identification, characterization, and CAPS marker development, Mol. Breed. 40 (2020) 68.

[28]

G. Mangini, A. Blanco, D. Nigro, M.A. Signorile, R. Simeone, Candidate genes and quantitative trait loci for grain yield and seed size in durum wheat, Plants 10 (2021) 312.

[29]

L.I. Yang, D. Zhao, Z. Meng, K. Xu, J. Yan, X. Xia, S. Cao, Y. Tian, Z. He, Y. Zhang, QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping, Theor. Appl. Genet. 133 (2020) 857–872.

[30]

J.M. Soriano, P. Colasuonno, I. Marcotuli, A. Gadaleta, Meta-QTL analysis and identification of candidate genes for quality, abiotic and biotic stress in durum wheat, Sci. Rep. 11 (2021) 11877.

[31]

D.K. Saini, P. Srivastava, N. Pal, P.K. Gupta, Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.), Theor. Appl. Genet. 135 (2022) 1049–1081.

[32]

P. Cao, X. Liang, H. Zhao, B. Feng, E. Xu, L. Wang, Y. Hu, Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.), Planta 250 (2019) 1967–1981.

[33]

S. Li, L. Wang, Y. Meng, Y. Hao, H. Xu, M. Hao, S. Lan, Y. Zhang, L. Lv, K. Zhang, X. Peng, C. Lan, X. Li, Y. Zhang, Dissection of genetic basis underpinning kernel weight-related traits in common wheat, Plants 10 (2021) 713.

[34]

J. Ma, H. Zhang, S. Li, Y. Zou, T. Li, J. Liu, P. Ding, Y. Mu, H. Tang, M. Deng, Y. Liu, Q. Jiang, G. Chen, H. Kang, W. Li, Z. Pu, Y. Wei, Y. Zheng, X. Lan, Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16, BMC Genet. 20 (2019) 77.

[35]

X.C. Lizana, R. Riegel, L.D. Gomez, J. Herrera, A. Isla, S.J. McQueen-Mason, D.F. Calderini, Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.), J. Exp. Bot. 61 (2010) 1147–1157.

[36]

A.K. Hasan, J. Herrera, C. Lizana, D.F. Calderini, Carpel weight, grain length and stabilized grain water content are physiological drivers of grain weight determination of wheat, Field Crops Res. 123 (2011) 241–247.

[37]

V.C. Gegas, A. Nazari, S. Griffiths, J. Simmonds, L. Fish, S. Orford, L. Sayers, J.H. Doonan, J.W. Snape, A genetic framework for grain size and shape variation in wheat, Plant Cell 22 (2010) 1046–1056.

[38]

J. Simmonds, P. Scott, J. Brinton, T.C. Mestre, M. Bush, A. del Blanco, J. Dubcovsky, C. Uauy, A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains, Theor. Appl. Genet. 129 (2016) 1099–1112.

[39]

N.M. Adamski, E. Anastasiou, S. Eriksson, C.M. O’Neill, M. Lenhard, Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 20115–20120.

[40]

J. Brinton, J. Simmonds, F. Minter, M. Leverington-Waite, J. Snape, C. Uauy, Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat, New Phytol. 215 (2017) 1026–1038.

[41]

C. Dong, L. Zhang, Z. Chen, C. Xia, Y. Gu, J. Wang, D. Li, Z. Xie, Q. Zhang, X. Zhang, L. Gui, X. Liu, X. Kong, Combining a new exome capture panel with an effective varBScore algorithm accelerates BSA-based gene cloning in wheat, Front. Plant Sci. 11 (2020) 1249.

[42]

S.A. Martinez, O. Shorinola, S. Conselman, D. See, D.Z. Skinner, C. Uauy, C.M. Steber, Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype, Theor. Appl. Genet. 133 (2020) 719–736.

[43]

G. Ji, Z. Xu, X. Fan, Q. Zhou, Q. Yu, X. Liu, S. Liao, B. Feng, T. Wang, Identification of a major and stable QTL on chromosome 5A confers spike length in wheat (Triticum aestivum L.), Mol. Breed. 41 (2021) 56.

[44]

L. Meng, H. Li, L. Zhang, J. Wang, Q.T.L. IciMapping, integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations, Crop J. 3 (2015) 269–283.

[45]

J.T. Hill, B.L. Demarest, B.W. Bisgrove, B. Gorsi, Y.C. Su, H.J. Yost, MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq, Genome Res. 23 (2013) 687–697.

[46]

C. Li, F. Ling, G. Su, W. Sun, H. Liu, Y. Su, X. Qi, Location and mapping of the NCLB resistance genes in maize by bulked segregant analysis (BSA) using whole genome re-sequencing, Mol. Breed. 40 (2020) 92.

[47]

A. Abe, S. Kosugi, K. Yoshida, S. Natsume, H. Takagi, H. Kanzaki, H. Matsumura, K. Yoshida, C. Mitsuoka, M. Tamiru, H. Innan, L. Cano, S. Kamoun, R. Terauchi, Genome sequencing reveals agronomically important loci in rice using MutMap, Nat. Biotechnol. 30 (2012) 174–178.

[48]
J.W. Ooijen, JoinMap 4.0: software for the calculation of genetic linkage maps in experimental population, Kyazma BV, Wageningen, the Netherlands, 2006.
[49]

R.E. Voorrips, MapChart: software for the graphical presentation of linkage maps and QTLs, J. Hered. 93 (2002) 77–78.

[50]

S. Ma, M. Wang, J. Wu, W. Guo, Y. Chen, G. Li, Y. Wang, W. Shi, G. Xia, D. Fu, Z. Kang, F. Ni, WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat, Mol. Plant. 14 (2021) 1965–1968.

[51]

C. Hao, C. Jiao, J. Hou, T. Li, H. Liu, Y. Wang, J. Zheng, H. Liu, Z. Bi, F. Xu, J. Zhao, L. Ma, Y. Wang, U. Majeed, X. Liu, R. Appels, M. Maccaferri, R. Tuberosa, H. Lu, X. Zhang, Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China, Mol. Plant 13 (2020) 1733–1751.

[52]

Y. Yao, L. Lv, L. Zhang, H. Yao, Z. Dong, J. Zhang, J. Ji, X. Jia, H. Wang, Genetic gains in grain yield and physiological traits of winter wheat in Hebei Province of China, from 1964 to 2007, Field Crops Res. 239 (2019) 114–123.

[53]

Q. Xie, S. Mayes, D.L. Sparkes, Carpel size, grain filling, and morphology determine individual grain weight in wheat, J. Exp. Bot. 66 (2015) 6715–6730.

[54]

T. Li, G. Deng, Y. Su, Z. Yang, Y. Tang, J. Wang, J. Zhang, X. Qiu, X. Pu, W. Yang, J. Li, Z. Liu, H. Zhang, J. Liang, M. Yu, Y. Wei, H. Long, Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (Triticum aestivum L.), Theor. Appl. Genet. 135 (2022) 257–271.

[55]

H. Zhai, Z. Feng, X. Du, Y. Song, X. Liu, Z. Qi, L. Song, J. Li, L. Li, H. Peng, Z. Hu, Y. Yao, M. Xin, S. Xiao, Q. Sun, Z. Ni, A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.), Theor. Appl. Genet. 131 (2018) 539–553.

[56]

Y.I. Zhang, D.A. Li, D. Zhang, X. Zhao, X. Cao, L. Dong, J. Liu, K. Chen, H. Zhang, C.Gao, D. Wang, Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits, Plant J. 94 (2018) 857–866.

[57]

Z. Feng, L. Song, W. Song, Z. Qi, J. Yuan, R. Li, H. Han, H. Wang, Z. Chen, W. Guo, M. Xin, J. Liu, Z. Hu, H. Peng, Y. Yao, Q. Sun, Z. Ni, J. Xing, The decreased expression of GW2 homologous genes contributed to the increased grain width and thousand-grain weight in wheat-Dasypyrum villosum 6VS·6DL translocation lines, Theor. Appl. Genet. 134 (2021) 3873–3894.

[58]

F. Sestili, R. Pagliarello, A. Zega, R. Saletti, A. Pucci, E. Botticella, S. Masci, S. Tundo, I. Moscetti, S. Foti, D. Lafiandra, Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes, Theor. Appl. Genet. 132 (2019) 419–429.

[59]

Y. Tu, H. Liu, J. Liu, H. Tang, Y. Mu, M. Deng, Q. Jiang, Y. Liu, G. Chen, J. Wang, P. Qi, Z. Pu, G. Chen, Y. Peng, Y. Jiang, Q. Xu, H. Kang, X. Lan, Y. Wei, Y. Zheng, J. Ma, QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds, Theor. Appl. Genet. 134 (2021) 261–278.

[60]

W. Yang, D. Liu, J. Li, L. Zhang, H. Wei, X. Hu, Y. Zheng, Z. He, Y. Zou, Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China, J. Genet. Genomics 36 (2009) 539–546.

[61]

F. Li, W. Wen, J. Liu, Y. Zhang, S. Cao, Z. He, A. Rasheed, H. Jin, C. Zhang, J. Yan, P. Zhang, Y. Wan, X. Xia, Genetic architecture of grain yield in bread wheat based on genome-wide association studies, BMC Plant Biol. 19 (2019) 168.

[62]

S. Pattanaik, B. Patra, S.K. Singh, L. Yuan, An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis, Front. Plant Sci. 5 (2014) 259.

The Crop Journal
Pages 564-572
Cite this article:
Ji G, Xu Z, Fan X, et al. Identification and validation of major QTL for grain size and weight in bread wheat (Triticum aestivum L.). The Crop Journal, 2023, 11(2): 564-572. https://doi.org/10.1016/j.cj.2022.06.014
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return