PDF (5.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Phenotypical and gene co-expression network analyses of seed shattering in divergent sorghum (Sorghum spp.)

Xin XiaoaMengjiao Zhua,bYishan LiuaJingru ZhengbYiping CuiaCandong XiongbJiangjiang LiubJun Chena,b()Hongwei Caia,b,c()
College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388–5 Higashiakada, Nasushiobara, Tochigi 329–2742, Japan
Show Author Information

Abstract

Sorghum [Sorghum bicolor (L.) Moench], a multipurpose C4 crop, is also a model species of the Poaceae family for plant research. During the process of domestication, the modification of seed dispersal mode is considered a key event, as the loss of seed shattering caused a significant increase in yield. In order to understand the seed shattering process in sorghum, we further studied eight previously identified divergent sorghum germplasm with different shattering degrees. We described their phenotypes in great detail, analyzed the histology of abscission zone, and conducted a gene co-expression analysis. We observed that the abscission layer of the most strong-shattering varieties began to differentiate before the 5–10 cm panicles development stage and was completely formed at flag leaf unfolding. The protective cells on the pedicels were also fully lignified by flowering. Through the weighted gene correlation network analysis (WGCNA), we mined for candidate genes involved in the abscission process at the heading stage. We found that these genes were mainly associated with such biological processes as hormone signal transmission (SORBI_3003G361300, SORBI_3006G216500, SORBI_3009G027800, SORBI_3007G077200), cell wall modification and degradation (SORBI_3002G205500, SORBI_3004G013800, SORBI_3010G022400, SORBI_3003G251800, SORBI_3003G254700, SORBI_3003G410800, SORBI_3009G162700, SORBI_3001G406700, SORBI_3004G042700, SORBI_3004G244600, SORBI_3001G099100), and lignin synthesis (SORBI_3004G220700, SORBI_3004G062500, SORBI_3010G214900, SORBI_3009G181800). Our study has provided candidate genes required for shedding for further study. We believe that function characterization of these genes may provide insight into our understanding of seed shattering process.

References

[1]

J.F. Doebley, B.S. Gaut, B.D. Smith, The molecular genetics of crop domestication, Cell 127 (2006) 1309–1321.

[2]

K. Hammer, Das Domestikationssyndrom, Die Kulturpflanze 32 (1984) 11–34.

[3]

T. Sang, Genes and mutations underlying domestication transitions in grasses, Plant Physiol. 149 (2009) 63–70.

[4]

J.R. Harlan, J.M.J. de Wet, Some thoughts about weeds, Econ. Bot. 19 (1965) 16–24.

[5]

D.Q. Fuller, Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the old world, Ann. Bot. 100 (2007) 903–924.

[6]

H. Lang, Y. He, F. Li, D. Ma, J. Sun, Integrative hormone and transcriptome analysis underline the role of abscisic acid in seed shattering of weedy rice, Plant Growth Regul. 94 (2021) 261–273.

[7]

S.E. Patterson, Cutting Loose, Abscission and dehiscence in Arabidopsis, Plant Physiol. 126 (2001) 494–500.

[8]

D.J. Osborne, P.W. Morgan, Abscission, Crit. Rev. Plant Sci. 8 (1989) 103–129.

[9]

R. Sexton, J.A. Roberts, Cell biology of abscission, Annu. Rev. Plant Physiol. 33 (1982) 133–162.

[10]

L.H. Estornell, J. Agustí, P. Merelo, M. Talón, F.R. Tadeo, Elucidating mechanisms underlying organ abscission, Plant Sci. 199–200 (2013) 48–60.

[11]

J. Kim, Four shades of detachment: regulation of floral organ abscission, Plant Signal. Behav. 9 (2014) e976154.

[12]

Z. Lin, X. Li, L.M. Shannon, C.T. Yeh, M.L. Wang, G. Bai, Z. Peng, J. Li, H.N. Trick, T. E. Clemente, J. Doebley, P.S. Schnable, M.R. Tuinstra, T.T. Tesso, F. White, J. Yu, Parallel domestication of the Shattering1 genes in cereals, Nat. Genet. 44 (2012) 720–724.

[13]

S. Odonkor, S. Choi, D. Chakraborty, L. Martinez-Bello, X. Wang, B.A. Bahri, M.I. Tenaillon, O. Panaud, K.M. Devos, QTL mapping combined with comparative analyses identified candidate genes for reduced shattering in Setaria italica, Front. Plant Sci. 9 (2018) 918.

[14]

S. Lv, W. Wu, M. Wang, R.S. Meyer, M.N. Ndjiondjop, L. Tan, H. Zhou, J. Zhang, Y. Fu, H. Cai, C. Sun, R.A. Wing, Z. Zhu, Genetic control of seed shattering during African rice domestication, Nat. Plants 4 (2018) 331–337.

[15]

C. Li, Rice domestication by reducing shattering, Science 311 (2006) 1936–1939.

[16]

Z. Lin, M.E. Griffith, X. Li, Z. Zhu, L. Tan, Y. Fu, W. Zhang, X. Wang, D. Xie, C. Sun, Origin of seed shattering in rice, Oryza sativa L., Planta 226 (2007) 11–20.

[17]

W. Wu, X. Liu, M. Wang, R.S. Meyer, X. Luo, M.N. Ndjiondjop, L. Tan, J. Zhang, J. Wu, H. Cai, C. Sun, X. Wang, R.A. Wing, Z. Zhu, A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication, Nat. Plants 3 (2017) 17064.

[18]

S. Konishi, T. Izawa, S.Y. Lin, K. Ebana, Y. Fukuta, T. Sasaki, M. Yano, An SNP caused loss of seed shattering during rice domestication, Science 312 (2006) 1392–1396.

[19]

J. Yoon, L.H. Cho, S.L. Kim, H. Choi, H.J. Koh, G. An, The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis, Plant J. 79 (2014) 717–728.

[20]

Y. Zhou, D. Lu, C. Li, J. Luo, B.F. Zhu, J. Zhu, Y. Shangguan, Z. Wang, T. Sang, B. Zhou, B. Han, Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1, Plant Cell 24 (2012) 1034–1048.

[21]

K.J. Simons, J.P. Fellers, H.N. Trick, Z. Zhang, Y.S. Tai, B.S. Gill, J.D. Faris, Molecular characterization of the major wheat domestication gene Q, Genetics 172 (2006) 547–555.

[22]

H. Ji, S.R. Kim, Y.H. Kim, H. Kim, M.Y. Eun, I.D. Jin, Y.S. Cha, D.W. Yun, B.O. Ahn, M.C. Lee, G.S. Lee, U.H. Yoon, J.S. Lee, Y.H. Lee, S.C. Suh, W. Jiang, J.I. Yang, P. Jin, S.R. McCouch, G. An, H.J. Koh, Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice, Plant J. 61 (2010) 96–106.

[23]

L. Jiang, X. Ma, S. Zhao, Y. Tang, F. Liu, P. Gu, Y. Fu, Z. Zhu, H. Cai, C. Sun, L. Tan, The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size, Plant Cell 31 (2019) 17–36.

[24]

H. Tang, H.E. Cuevas, S. Das, U.U. Sezen, C. Zhou, H. Guo, V.H. Goff, Z. Ge, T.E. Clemente, A.H. Paterson, Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 15824–15829.

[25]

A.H. Paterson, J.E. Bowers, R. Bruggmann, I. Dubchak, J. Grimwood, H. Gundlach, G. Haberer, U. Hellsten, T. Mitros, A. Poliakov, J. Schmutz, M. Spannagl, H. Tang, X. Wang, T. Wicker, A.K. Bharti, J. Chapman, F.A. Feltus, U. Gowik, I.V. Grigoriev, E. Lyons, C.A. Maher, M. Martis, A. Narechania, R.P. Otillar, B.W. Penning, A.A. Salamov, Y. Wang, L. Zhang, N.C. Carpita, M. Freeling, A.R. Gingle, C.T. Hash, B. Keller, P. Klein, S. Kresovich, M.C. McCann, R. Ming, D. G. Peterson, D. Mehboob-ur-Rahman, P. Ware, K.F.X. Westhoff, J. Mayer, D.S.R. Messing, The Sorghum bicolor genome and the diversification of grasses, Nature 457 (2009) 551–556.

[26]

J.M.J. de Wet, Systematics and evolution of sorghum Sect. Sorghum (Gramineae), Am. J. Bot. 65 (1978) 477–484.

[27]

J.D. Snowden, The cultivated races of sorghum, Agron. J. 45 (1953) 175.

[28]
S.E. Ruzin, Plant Microtechnique and Microscopy, Oxford University Press, New York, NY, USA, 1999.
[29]

P. Sudhakar Reddy, D. Srinivas Reddy, K. Sivasakthi, P. Bhatnagar-Mathur, V. Vadez, K.K. Sharma, Evaluation of sorghum[Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization, Front. Plant Sci. 7 (2016) 529.

[30]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods 25 (2001) 402–408.

[31]

D. Kim, B. Langmead, S.L. Salzberg, HISAT: a fast spliced aligner with low memory requirements, Nat. Methods 12 (2015) 357–360.

[32]

Y. Liao, G.K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics 30 (2014) 923–930.

[33]

M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014) 550.

[34]

Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B Methodol. 57 (1995) 289–300.

[35]

G. Yu, L.G. Wang, Y. Han, Q.Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS 16 (2012) 284–287.

[36]

Z. He, X. Zhao, Z. Lu, H. Wang, P. Liu, F. Zeng, Y. Zhang, Comparative transcriptome and gene co-expression network analysis reveal genes and signaling pathways adaptively responsive to varied adverse stresses in the insect fungal pathogen, Beauveria bassiana, J. Invertebr. Pathol. 151 (2018) 169–181.

[37]

M. Pourkheirandish, G. Hensel, B. Kilian, N. Senthil, G. Chen, M. Sameri, P. Azhaguvel, S. Sakuma, S. Dhanagond, R. Sharma, M. Mascher, A. Himmelbach, S. Gottwald, S.K. Nair, A. Tagiri, F. Yukuhiro, Y. Nagamura, H. Kanamori, T. Matsumoto, G. Willcox, C.P. Middleton, T. Wicker, A. Walther, R. Waugh, G.B. Fincher, N. Stein, J. Kumlehn, K. Sato, T. Komatsuda, Evolution of the grain dispersal system in barley, Cell 162 (2015) 527–539.

[38]

D. Wang, S. Yuan, L. Yin, J. Zhao, B. Guo, J. Lan, X. Li, A missense mutation in the transmembrane domain of CESA9 affects cell wall biosynthesis and plant growth in rice, Plant Sci. 196 (2012) 117–124.

[39]

T. Kotake, T. Aohara, K. Hirano, A. Sato, Y. Kaneko, Y. Tsumuraya, H. Takatsuji, S. Kawasaki, Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls, J. Exp. Bot. 62 (2011) 2053–2062.

[40]

V. Bischoff, S. Nita, L. Neumetzler, D. Schindelasch, A. Urbain, R. Eshed, S. Persson, D. Delmer, W.R. Scheible, TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis, Plant Physiol. 153 (2010) 590–602.

[41]

S. Meir, S. Philosoph-Hadas, S. Sundaresan, K.S.V. Selvaraj, S. Burd, R. Ophir, B. Kochanek, M.S. Reid, C.Z. Jiang, A. Lers, Microarray analysis of the abscissionrelated transcriptome in the tomato flower abscission zone in response to auxin depletion, Plant Physiol. 154 (2010) 1929–1956.

[42]

F.T. Addicott, R.S. Lynch, H.R. Carns, Auxin gradient theory of abscission regulation, Science 121 (1955) 644–645.

[43]

M.J. Bennett, A. Marchant, H.G. Green, S.T. May, S.P. Ward, P.A. Millner, A.R. Walker, B. Schulz, K.A. Feldmann, Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism, Science 273 (1996) 948–950.

[44]

L. Li, Y. He, Y. Wang, S. Zhao, X. Chen, T. Ye, Y. Wu, Y. Wu, Arabidopsis PLC2 is involved in auxin-modulated reproductive development, Plant J. 84 (2015) 504–515.

[45]

J.E. Taylor, C.A. Whitelaw, Signals in abscission, New Phytol. 151 (2001) 323–340.

[46]

N. Mitsuda, M. Ohme-Takagi, NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity, Plant J. 56 (2008) 768–778.

[47]

Y. Dong, X. Yang, J. Liu, B.H. Wang, B.L. Liu, Y.Z. Wang, Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean, Nat. Commun. 5 (2014) 3352.

[48]

S.G. Hussey, E. Mizrachi, A.V. Spokevicius, G. Bossinger, D.K. Berger, A.A. Myburg, SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus, BMC Plant Biol. 11 (2011) 173.

[49]

F. Chen, R.A. Dixon, Lignin modification improves fermentable sugar yields for biofuel production, Nat. Biotechnol. 25 (2007) 759–761.

[50]

A.V. Alber, H. Renault, A. Basilio-Lopes, J. Bassard, Z. Liu, P. Ullmann, A. Lesot, F. Bihel, M. Schmitt, D. Werck-Reichhart, J. Ehlting, Evolution of coumaroyl conjugate 3-hydroxylases in land plants: lignin biosynthesis and defense, Plant J. 99 (2019) 924–936.

[51]

D.M. Brown, Z. Zhang, E. Stephens, P. Dupree, S.R. Turner, Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis, Plant J. 57 (2009) 732–746.

[52]

C. Lee, Q. Teng, W. Huang, R. Zhong, Z.H. Ye, The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone, Plant Physiol. 153 (2010) 526–541.

[53]

G. Xiong, K. Cheng, M. Pauly, Xylan O-acetylation impacts xylem development and enzymatic recalcitrance as indicated by the Arabidopsis mutant tbl29, Mol. Plant 6 (2013) 1373–1375.

[54]

B. Henrissat, A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem. J. 280 (1991) 309–316.

[55]

B. Henrissat, A. Bairoch, Updating the sequence-based classification of glycosyl hydrolases, Biochem. J. 316 (1996) 695–696.

[56]

H.L. Zhou, S.J. He, Y.R. Cao, T. Chen, B.X. Du, C.C. Chu, J.S. Zhang, S.Y. Chen, OsGLU1, A putative membrane-bound endo-1,4-β-D-glucanase from rice, affects plant internode elongation, Plant Mol. Biol. 60 (2006) 137–151.

[57]

S. Rips, N. Bentley, I.S. Jeong, J.L. Welch, A. von Schaewen, H. Koiwa, Multiple N-glycans cooperate in the subcellular targeting and functioning of Arabidopsis KORRIGAN1, Plant Cell 26 (2014) 3792–3808.

[58]

G.P. Kadkol, G.M. Halloran, R.H. MacMillan, C.E. Caviness, Shatter resistance in crop plants, Crit. Rev. Plant Sci. 8 (1989) 169–188.

[59]

H.S. Ji, S.H. Chu, W. Jiang, Y.I. Cho, J.H. Hahn, M.Y. Eun, S.R. McCouch, H.J. Koh, Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes, Genetics 173 (2006) 995–1005.

[60]

F.B. Abeles, B. Rubinstein, Regulation of ethylene evolution and leaf abscission by auxin, Plant Physiol. 39 (1964) 963–969.

[61]

S. Meir, D.A. Hunter, J.C. Chen, V. Halaly, M.S. Reid, Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa, Plant Physiol. 141 (2006) 1604–1616.

[62]

M.M. Basu, Z.H. González-Carranza, S. Azam-Ali, S. Tang, A.A. Shahid, J.A. Roberts, The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding, Plant Physiol. 162 (2013) 96–106.

[63]

J.A. Roberts, K.A. Elliott, Z.H. Gonzalez-Carranza, Abscission, dehiscence, and other cell separation processes, Annu. Rev. Plant Biol. 53 (2002) 131–158.

[64]

R. Zhong, C. Lee, J. Zhou, R.L. McCarthy, Z.H. Ye, A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis, Plant Cell 20 (2008) 2763–2782.

[65]

J.C.M.S. Moura, C.A.V. Bonine, J. de Oliveira Fernandes, M.C. Viana, P.M. Dornelas, Abiotic and biotic stresses and changes in the lignin content and composition in plants, J. Integr. Plant Biol. 52 (2010) 360–376.

[66]

Z. Fu, J. Song, J. Zhao, P.E. Jameson, Identification and expression of genes associated with the abscission layer controlling seed shattering in Lolium perenne, AoB Plants 11 (2019) ply076.

[67]

X. Zhao, W. Xie, J. Zhang, Z. Zhang, Y. Wang, Histological characteristics, cell wall hydrolytic enzymes activity and candidate genes expression associated with seed shattering of Elymus sibiricus accessions, Front. Plant Sci. 08 (2017) 606.

[68]

H. Ragg, D.N. Kuhn, K. Hahlbrock, Coordinated regulation of 4-coumarate: CoA ligase and phenylalanine ammonia-lyase mRNAs in cultured plant cells, J. Biol. Chem. 256 (1981) 10061–10065.

[69]

B. Weisshaar, G.I. Jenkins, Phenylpropanoid biosynthesis and its regulation, Curr. Opin. Plant Biol. 1 (1998) 251–257.

[70]

E. Libertini, Y. Li, S.J. McQueen-Mason, Phylogenetic analysis of the plant endo-β-1,4-glucanase gene family, J. Mol. Evol. 58 (2004) 506–515.

[71]

J. Agustí, P. Merelo, M. Cercós, F.R. Tadeo, M. Talón, Ethylene-induced differential gene expression during abscission of Citrus leaves, J. Exp. Bot. 59 (2008) 2717–2733.

[72]

J. Agustí, P. Merelo, M. Cercós, F.R. Tadeo, M. Talón, Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves, BMC Plant Biol. 9 (2009) 127.

[73]

S. Cai, C.C. Lashbrook, Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2, Plant Physiol. 146 (2008) 1305–1321.

The Crop Journal
Pages 478-489
Cite this article:
Xiao X, Zhu M, Liu Y, et al. Phenotypical and gene co-expression network analyses of seed shattering in divergent sorghum (Sorghum spp.). The Crop Journal, 2023, 11(2): 478-489. https://doi.org/10.1016/j.cj.2022.08.009
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return