AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Comparison of sequencing-based and array-based genotyping platforms for genomic prediction of maize hybrid performance

Guangning YuaYanru CuibYuxin JiaoaKai ZhouaXin WangaWenyan YangaYiyi XuaKun YangaXuecai ZhangcPengcheng LiaZefeng YangaYang Xua( )Chenwu Xua( )
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China
International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico D.F, Mexico
Show Author Information

Abstract

Genomic selection (GS) is a powerful tool for improving genetic gain in maize breeding. However, its routine application in large-scale breeding pipelines is limited by the high cost of genotyping platforms. Although sequencing-based and array-based genotyping platforms have been used for GS, few studies have compared prediction performance among platforms. In this study, we evaluated the predictabilities of four agronomic traits in 305 maize hybrids derived from 149 parental lines subjected to genotyping by sequencing (GBS), a 40K SNP array, and target sequence capture (TSC) using eight GS models. The GBS marker dataset yielded the highest predictabilities for all traits, followed by TSC and SNP array datasets. We investigated the effect of marker density and statistical models on predictability among genotyping platforms and found that 1K SNPs were sufficient to achieve comparable predictabilities to 10K and all SNPs, and BayesB, GBLUP, and RKHS performed well, while XGBoost performed poorly in most cases. We also selected significant SNP subsets using genome-wide association study (GWAS) analyses in three panels to predict hybrid performance. GWAS facilitated selecting effective SNP subsets for GS and thus reduced genotyping cost, but depended heavily on the GWAS panel. We conclude that there is still room for optimization of the existing SNP array, and using genotyping by target sequencing (GBTS) techniques to integrate a few functional markers identified by GWAS into the 1K SNP array holds great promise of being an effective strategy for developing desirable GS breeding arrays.

References

[1]

J. Crossa, P. Pérez-Rodríguez, J. Cuevas, O. Montesinos-López, D. Jarquín, G. de los Campos, J. Burgueño, J.M. González-Camacho, S. Pérez-Elizalde, Y. Beyene, S. Dreisigacker, R. Singh, X. Zhang, M. Gowda, M. Roorkiwal, J. Rutkoski, R.K. Varshney, Genomic selection in plant breeding: methods, models, and perspectives, Trends Plant Sci. 22 (2017) 961–975.

[2]

Y. Xu, Y. Zhao, X. Wang, Y. Ma, P. Li, Z. Yang, X. Zhang, C. Xu, S. Xu, Incorporation of parental phenotypic data into multi-omic models improves prediction of yield-related traits in hybrid rice, Plant Biotechnol. J. 19 (2021) 261–272.

[3]

Y. Xu, X. Liu, J. Fu, H. Wang, J. Wang, C. Huang, B.M. Prasanna, M.S. Olsen, G. Wang, A. Zhang, Enhancing genetic gain through genomic selection: from livestock to plants, Plant Commun. 1 (2020) 100005.

[4]

B.R. Rice, A.E. Lipka, Diversifying maize genomic selection models, Mol. Breed. 41 (2021) 33.

[5]

Y. Xiao, S. Jiang, Q. Cheng, X. Wang, J. Yan, R. Zhang, F. Qiao, C. Ma, J. Luo, W. Li, H. Liu, W. Yang, W. Song, Y. Meng, M.L. Warburton, J. Zhao, X. Wang, J. Yan, The genetic mechanism of heterosis utilization in maize improvement, Genome Biol. 22 (2021) 148.

[6]

E.J. Millet, W. Kruijer, A. Coupel-Ledru, S. Alvarez Prado, L. Cabrera-Bosquet, S. Lacube, A. Charcosset, C. Welcker, F. van Eeuwijk, F. Tardieu, Genomic prediction of maize yield across European environmental conditions, Nat. Genet. 51 (2019) 952–956.

[7]

Z. Guo, Q. Yang, F. Huang, H. Zheng, Z. Sang, Y. Xu, C. Zhang, K. Wu, J. Tao, B.M. Prasanna, M.S. Olsen, Y. Wang, J. Zhang, Y. Xu, Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip, Plant Commun. 2 (2021) 100230.

[8]

Y.S. Chung, S.C. Choi, T.H. Jun, C. Kim, Genotyping-by-sequencing: a promising tool for plant genetics research and breeding, Hortic Environ. Biote. 58 (2017) 425–431.

[9]

A. Rasheed, Y. Hao, X. Xia, A. Khan, Y. Xu, R.K. Varshney, Z. He, Crop breeding chips and genotyping platforms: progress, challenges, and perspectives, Mol. Plant 10 (2017) 1047–1064.

[10]

Y. Wu, F. San Vicente, K. Huang, T. Dhliwayo, D.E. Costich, K. Semagn, N. Sudha, M. Olsen, B.M. Prasanna, X. Zhang, R. Babu, Molecular characterization of CIMMYT maize inbred lines with genotyping-by-sequencing SNPs, Theor. Appl. Genet. 129 (2016) 753–765.

[11]

R.J. Elshire, J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, S.E. Mitchell, A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species, PLoS ONE 6 (2011) e19379.

[12]

J. Crossa, Y. Beyene, S. Kassa, P. Perez, J.M. Hickey, C. Chen, G. de los Campos, J. Burgueno, V.S. Windhausen, E. Buckler, J.L. Jannink, M.A. Lopez Cruz, R. Babu, Genomic prediction in maize breeding populations with genotyping-by-sequencing, G3-Genes Genomes Genet. 3 (2013) 1903–1926.

[13]

N. Wang, Y. Yuan, H. Wang, D. Yu, Y. Liu, A. Zhang, M. Gowda, S.K. Nair, Z. Hao, Y. Lu, F. San Vicente, B.M. Prasanna, X. Li, X. Zhang, Applications of genotyping-by-sequencing (GBS) in maize genetics and breeding, Sci. Rep. 10 (2020) 16308.

[14]

R. Guo, T. Dhliwayo, E.K. Mageto, N. Palacios-Rojas, M. Lee, D. Yu, Y. Ruan, A. Zhang, F. San Vicente, M. Olsen, J. Crossa, B.M. Prasanna, L. Zhang, X. Zhang, Genomic prediction of kernel zinc concentration in multiple maize populations using genotyping-by-sequencing and repeat amplification sequencing markers, Front. Plant Sci. 11 (2020) 534.

[15]

Z. Guo, H. Wang, J. Tao, Y. Ren, C. Xu, K. Wu, C. Zou, J. Zhang, Y. Xu, Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize, Mol. Breed. 39 (2019) 37.

[16]

M.W. Ganal, G. Durstewitz, A. Polley, A. Bérard, E.S. Buckler, A. Charcosset, J.D. Clarke, E.M. Graner, M. Hansen, J. Joets, M.C. Le Paslier, M.D. McMullen, P. Montalent, M. Rose, C.C. Schön, Q. Sun, H. Walter, O.C. Martin, M. Falque, A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome, PLoS ONE 6 (2011) e28334.

[17]

S. Unterseer, E. Bauer, G. Haberer, M. Seidel, C. Knaak, M. Ouzunova, T. Meitinger, T.M. Strom, R. Fries, H. Pausch, C. Bertani, A. Davassi, K.F.X. Mayer, C.C. Schön, A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array, BMC Genomics 15 (2014) 823.

[18]

H. Tian, Y. Yang, H. Yi, L. Xu, H. He, Y. Fan, L. Wang, J. Ge, Y. Liu, F. Wang, J. Zhao, New resources for genetic studies in maize (Zea mays L.): a genome-wide Maize6H-60K single nucleotide polymorphism array and its application, Plant J. 105 (2021) 1113–1122.

[19]

Y.H. Liu, Y. Xu, M. Zhang, Y. Cui, S.H. Sze, C.W. Smith, S. Xu, H.B. Zhang, Accurate prediction of a quantitative trait using the genes controlling the trait for gene-based breeding in cotton, Front. Plant Sci. 11 (2020) 583277.

[20]

M. Zhang, Y. Cui, Y.H. Liu, W. Xu, S.H. Sze, S.C. Murray, S. Xu, H.B. Zhang, Accurate prediction of maize grain yield using its contributing genes for gene-based breeding, Genomics 112 (2020) 225–236.

[21]

X. Wang, Z. Zhang, Y. Xu, P. Li, X. Zhang, C. Xu, Using genomic data to improve the estimation of general combining ability based on sparse partial diallel cross designs in maize, Crop J. 8 (2020) 819–829.

[22]

P. Li, J. Wei, H. Wang, Y. Fang, S. Yin, Y. Xu, J. Liu, Z. Yang, C. Xu, Natural variation and domestication selection of ZmPGP1 affects plant architecture and yield-related traits in maize, Genes-Basel 10 (2019) 664.

[23]

D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting linear mixed-effects models using lme4, J. Stat. Softw. 67 (2015) 1–48.

[24]

G.C. Allen, M.A. Flores-Vergara, S. Krasynanski, S. Kumar, W.F. Thompson, A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide, Nat. Protoc. 1 (2006) 2320–2325.

[25]

J.C. Glaubitz, T.M. Casstevens, F. Lu, J. Harriman, R.J. Elshire, Q. Sun, E.S. Buckler, TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline, PLoS ONE 9 (2014) e90346.

[26]

L. Yin, H. Zhang, Z. Tang, J. Xu, D. Yin, Z. Zhang, X. Yuan, M. Zhu, S. Zhao, X. Li, X. Liu, rMVP: a memory-efficient, visualization-enhanced, and parallelaccelerated tool for genome-wide association study, Genom. Proteom. Bioinf. 19 (2021) 619–628.

[27]

J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J. Stat. Softw. 33 (2010) 1–22.

[28]

B.H. Mevik, R. Wehrens, The pls package: principal component and partial least squares regression in R, J. Stat. Softw. 18 (2007) 1–23.

[29]

P. Pérez, G. de los Campos, Genome-wide regression and prediction with the BGLR statistical package, Genetics 198 (2014) 483–495.

[30]
T. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting System, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, Association for Computing Machinery: San Francisco, CA, USA. pp. 785–794.
[31]

A. Liaw, M. Wiener, Classification and regression by randomForest, R News 2 (2002) 18–22.

[32]

Y.W. Zhang, C.L. Tamba, Y.J. Wen, P. Li, W.L. Ren, Y.L. Ni, J. Gao, Y.M. Zhang, mrMLM v4.0.2: an R platform for multi-locus genome-wide association studies, Genom. Proteom. Bioinf. 18 (2020) 481–487.

[33]

J. Ren, Z. Li, P. Wu, A. Zhang, Y. Liu, G. Hu, S. Cao, J. Qu, T. Dhliwayo, H. Zheng, M. Olsen, B.M. Prasanna, F. San Vicente, X. Zhang, Genetic dissection of quantitative resistance to common rust (Puccinia sorghi) in tropical maize (Zea mays L.) by combined genome-wide association study, linkage mapping, and genomic prediction, Front. Plant Sci. 12 (2021) 692205.

[34]

X. Zhang, P. Pérez-Rodríguez, K. Semagn, Y. Beyene, R. Babu, M.A. López-Cruz, F. San Vicente, M. Olsen, E. Buckler, J.L. Jannink, B.M. Prasanna, J. Crossa, Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs, Heredity 114 (2015) 291–299.

[35]

Y. Yuan, J.E. Cairns, R. Babu, M. Gowda, D. Makumbi, C. Magorokosho, A. Zhang, Y. Liu, N. Wang, Z. Hao, F. San Vicente, M.S. Olsen, B.M. Prasanna, Y. Lu, X. Zhang, Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize, Front. Plant Sci. 9 (2019) 1919.

[36]

X. Liu, H. Wang, X. Hu, K. Li, Z. Liu, Y. Wu, C. Huang, Improving genomic selection with quantitative trait loci and nonadditive effects revealed by empirical evidence in maize, Front. Plant Sci. 10 (2019) 1129.

[37]

M. Ali, Y. Zhang, A. Rasheed, J.K. Wang, L.Y. Zhang, Genomic prediction for grain yield and yield-related traits in chinese winter wheat, Int. J. Mol. Sci. 21 (2020) 1342.

[38]

Y. Xu, C. Xu, S. Xu, Prediction and association mapping of agronomic traits in maize using multiple omic data, Heredity 119 (2017) 174–184.

[39]

P.S. Kristensen, A. Jahoor, J.R. Andersen, F. Cericola, J. Orabi, L.L. Janss, J. Jensen, Genome-wide association studies and comparison of models and crossvalidation strategies for genomic prediction of quality traits in advanced winter wheat breeding lines, Front. Plant Sci. 9 (2018) 69.

[40]

Y. Liu, G. Hu, A.O. Zhang, A. Loladze, Y. Hu, H. Wang, J. Qu, X. Zhang, M. Olsen, F. San Vicente, J. Crossa, F. Lin, B.M. Prasanna, Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm, Crop J. 9 (2021) 325–341.

The Crop Journal
Pages 490-498
Cite this article:
Yu G, Cui Y, Jiao Y, et al. Comparison of sequencing-based and array-based genotyping platforms for genomic prediction of maize hybrid performance. The Crop Journal, 2023, 11(2): 490-498. https://doi.org/10.1016/j.cj.2022.09.004

328

Views

14

Downloads

13

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 19 May 2022
Revised: 27 June 2022
Accepted: 17 September 2022
Published: 28 September 2022
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return