AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Pyramiding of multiple genes generates rapeseed introgression lines with clubroot and herbicide resistance, high oleic acid content, and early maturity

Zhaoyang WangaFucai WangaZihan YuaXiaorui ShiaXianming Zhouc,dPengfei WangaYixian SongaDengfeng Honga,bGuangsheng Yanga,b( )
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, Hainan, China
College of Tropical Crops Hainan University, Hainan University, Haikou 570288, Hainan, China
Show Author Information

Abstract

Clubroot and herbicide resistance, high oleic acid (OA) content, and early maturity are targets of rapeseed (Brassica napus L.) breeding. The objective of this study was to develop new male-fertility restorer lines by pyramiding favorable genes to improve these traits simultaneously. Seven elite alleles for the four traits were introduced into the restorer line 621R by speed breeding with marker-assisted and phenotypic selection. Six introgression lines (ILs) were developed with four- to seven-gene combinations and crossed with two elite parents to develop hybrids. All ILs and their corresponding hybrids displayed high resistance to both clubroot pathotype 4 and sulfonylurea herbicides. Three ILs and their hybrids showed large increases in OA contents and four showed earlier maturity. These new ILs may be useful in rapeseed hybrid breeding for the target traits.

References

[1]

A.L. Chai, X.W. Xie, Y.X. Shi, B.J. Li, Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China, Can. J. Plant Pathol. 36 (2014) 142–153.

[2]

M. Kawasaki, T. Ohara, M. Ishida, Y. Takahata, K. Hatakeyama, Development of novel clubroot resistant rapeseed lines (Brassica napus L.) effective against Japanese field isolates by marker assisted selection, Breed. Sci. 71 (2021) 528–537.

[3]

F. Yu, Y. Zhang, J. Wang, Q. Chen, M.M. Karim, B.D. Gossen, G. Peng, Identification of two major QTLs in Brassica napus lines with introgressed clubroot resistance from turnip cultivar ECD01, Front. Plant Sci. 12 (2021) 785989.

[4]

Y. Wang, X. Xiang, F. Huang, W. Yu, X. Zhou, B. Li, Y. Zhang, P. Chen, C. Zhang, Fine mapping of clubroot resistance loci CRA8.1 and candidate gene analysis in Chinese cabbage (Brassica rapa L.), Front. Plant Sci. 13 (2022) 898108.

[5]

Z. Yang, Y. Jiang, J. Gong, Q. Li, B. Dun, D. Liu, F. Yin, L. Yuan, X. Zhou, H. Wang, J. Wang, Z. Zhan, N. Shah, C.C. Nwafor, Y. Zhou, P. Chen, L.I. Zhu, S. Li, B. Wang, J. Xiang, Y. Zhou, Z. Li, Z. Piao, Q. Yang, C. Zhang, R gene triplication confers European fodder turnip with improved clubroot resistance, Plant Biotechnol. J. 20 (2022) 1502–1517.

[6]

Z. Zhan, Y. Jiang, N. Shah, Z. Hou, B. Dun, S. Li, L. Zhu, Z. Li, Z. Piao, C. Zhang, Association of clubroot resistance locus PbBa8.1 with a linkage drag of high erucic acid content in the seed of the European turnip, Front. Plant Sci. 11 (2020) 810.

[7]

Q. Li, N. Shah, Y. Zhou, Z. Hou, J. Gong, J. Liu, Z. Shang, L. Zhang, Z. Zhan, H. Chang, T. Fu, Z. Piao, C. Zhang, Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R, Acta Agron. Sin. 47 (2020) 210–223 (in Chinese with English abstract).

[8]

N. Shah, J. Sun, S. Yu, Z. Yang, Z. Wang, F. Huang, B. Dun, J. Gong, Y. Liu, Y. Li, Q. Li, L. Yuan, A. Baloch, G. Li, S. Li, C. Zhang, Genetic variation analysis of field isolates of clubroot and their responses to Brassica napus lines containing resistant genes CRb and PbBa8.1 and their combination in homozygous and heterozygous state, Mol. Breed. 39 (2019) 10–11.

[9]

M.L. Hu, H.M. Pu, J.Q. Gao, W.H. Long, F. Chen, X.Y. Zhou, W. Zhang, Q.I. Peng, S. Chen, J.F. Zhang, Inheritance and molecular characterization of resistance to AHAS-inhibiting herbicides in rapeseed, J. Integr. Agric. 16 (2017) 2421–2433.

[10]

M. Jin, L. Chen, X.W. Deng, X. Tang, Development of herbicide resistance genes and their application in rice, Crop J. 10 (2022) 26–35.

[11]

R.G. Duggleby, J.A. McCourt, L.W. Guddat, Structure and mechanism of inhibition of plant acetohydroxyacid synthase, Plant Physiol. Biochem. 46 (2008) 309–324.

[12]

S.B. Powles, Q. Yu, Evolution in action: plants resistant to herbicides, Annu. Rev. Plant Biol. 61 (2010) 317–347.

[13]

Y. Guo, C. Liu, W. Long, J. Gao, J. Zhang, S. Chen, H. Pu, M. Hu, Development and molecular analysis of a novel acetohydroxyacid synthase rapeseed mutant with high resistance to sulfonylurea herbicides, Crop J. 10 (2022) 56–66.

[14]

R.G. Rutledge, T. Quellet, J. Hattori, B.L. Miki, Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family, Mol. Genet. Genomics 229 (1991) 31–40.

[15]

H. Li, J. Li, B.O. Zhao, J. Wang, L. Yi, C. Liu, J. Wu, G.J. King, K. Liu, Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility, Theor. Appl. Genet. 128 (2015) 107–118.

[16]

Q. Huang, J. Lv, Y. Sun, H. Wang, Y. Guo, G. Qu, S. Hu, Inheritance and molecular characterization of a novel mutated AHAS gene responsible for the resistance of AHAS-Inhibiting herbicides in rapeseed (Brassica napus L.), Int. J. Mol. Sci. 21 (2020) 1345.

[17]

W. Long, M. Hu, J. Gao, S. Chen, J. Zhang, L. Cheng, H. Pu, Identification and functional analysis of two new mutant BnFAD2 alleles that confer elevated oleic acid content in rapeseed, Front. Genet. 9 (2018) 399.

[18]

X. Hu, M. Sullivan-Gilbert, M. Gupta, S.A. Thompson, Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.), Theor. Appl. Genet. 113 (2006) 497–507.

[19]

H. Huang, T. Cui, L. Zhang, Q. Yang, Y. Yang, K. Xie, C. Fan, Y. Zhou, Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus, Theor. Appl. Genet. 133 (2020) 2401–2411.

[20]

Q. Yang, C. Fan, Z. Guo, J. Qin, J. Wu, Q. Li, T. Fu, Y. Zhou, Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents, Theor. Appl. Genet. 125 (2012) 715–729.

[21]

M. Matuszczak, S. Spasibionek, K. Gacek, I. Bartkowiak-Broda, Cleaved amplified polymorphic sequences (CAPS) marker for identification of two mutant alleles of the rapeseed BnaA.FAD2 gene, Mol. Biol. Rep. 47 (2020) 7607–7621.

[22]

W. Wang, B. Hu, D. Yuan, Y. Liu, R. Che, Y. Hu, S. Ou, Y. Liu, Z. Zhang, H. Wang, H. Li, Z. Jiang, Z. Zhang, X. Gao, Y. Qiu, X. Meng, Y. Liu, Y. Bai, Y. Liang, Y. Wang, L. Zhang, L. Li, Sodmergen, H. Jing, J. Li, C. Chu, Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice, Plant Cell 30 (2018) 638–651.

[23]

J. Wang, Y. Long, B. Wu, J. Liu, C. Jiang, L. Shi, J. Zhao, G.J. King, J. Meng, The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks, BMC Evol. Biol. 9 (2009) 271.

[24]

L. Chen, F. Dong, J. Cai, Q. Xin, C. Fang, L. Liu, L. Wan, G. Yang, D. Hong, A 2.833-kb insertion in BnFLC.A2 and its homeologous exchange with BnFLC.C2 during breeding selection generated early-flowering rapeseed, Mol. Plant 11 (2018) 222–225.

[25]

N. Wang, W. Qian, I. Suppanz, L. Wei, B. Mao, Y. Long, J. Meng, A.E. Müller, C. Jung, Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a, J. Exp. Bot. 62 (2011) 5641–5658.

[26]

J.M. Song, Z. Guan, J. Hu, C. Guo, Z. Yang, S. Wang, D. Liu, B.O. Wang, S. Lu, R. Zhou, W.Z. Xie, Y. Cheng, Y. Zhang, K. Liu, Q.Y. Yang, L.L. Chen, L. Guo, Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus, Nat. Plants 6 (2020) 34–45.

[27]

S. Yin, M. Wan, C. Guo, B. Wang, H. Li, G. Li, Y. Tian, X. Ge, G.J. King, K. Liu, Z. Li, J. Wang, Transposon insertions within alleles of BnaFLC.A10 and BnaFLC.A2 are associated with seasonal crop type in rapeseed, J. Exp. Bot. 71 (2020) 4729–4741.

[28]

A. Calderwood, A. Lloyd, J.O. Hepworth, E.H. Tudor, D.M. Jones, S. Woodhouse, L. Bilham, C. Chinoy, K. Williams, F. Corke, J.H. Doonan, L. Ostergaard, J.A. Irwin, R. Wells, R.J. Morris, Total FLC transcript dynamics from divergent paralogue expression explains flowering diversity in Brassica napus, New Phytol. 229 (2021) 3534–3548.

[29]

Y. Song, X. Duan, P. Wang, X. Li, X. Yuan, Z. Wang, L. Wan, G. Yang, D. Hong, Comprehensive speed breeding: a high-throughput and rapid generation system for long-day crops, Plant Biotechnol. J. 20 (2022) 13–15.

[30]

G.C. Allen, M.A. Flores-Vergara, S. Krasynanski, S. Kumar, W.F. Thompson, A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide, Nat. Protoc. 1 (2006) 2320–2325.

[31]

Z.X. Zhan, Y.F. Jiang, Z.Y. Zhu, C.S. Zhang, Q.Y. Yang, Q. Li, Z.K. Hou, J.F. Gong, Y. G. Cheng, J.S. Wu, T.D. Fu, Y.M. Zhou, Z.Y. Piao, C.Y. Zhang, Development of close linked marker to PbBa8.1 conferring canola resistance to Plasmodiophora brassicae, Chin. J. Oil Crop Sci. 37 (2015) 766–771 (in Chinese with English abstract).

[32]

J.L. Guo, X.R. Shi, Q. Xin, D.F. Hong, G.S. Yang, Breeding for thermo-sensitive pol cytoplasmic male sterile line and its restorer with high oleic acid through molecular marker-assisted selection in Brassica napus, Chin. J. Oil Crop Sci. 3 (2021) 418–425 (in Chinese with English abstract).

[33]

Q. Li, N. Shah, X. Zhou, H. Wang, W. Yu, J. Luo, Y. Liu, G. Li, C. Liu, C. Zhang, P. Chen, Identification of micro ribonucleic acids and their targets in response to Plasmodiophora brassicae infection in Brassica napus, Front. Plant Sci. 12 (2021) 734419.

[34]

Z. Zhan, C.C. Nwafor, Z. Hou, J. Gong, B. Zhu, Y. Jiang, Y. Zhou, J. Wu, Z. Piao, Y. Tong, C. Liu, C. Zhang, X.Q. Li, Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L., PLoS ONE 12 (2017) e0177470.

[35]

J. Li, J. Philp, J. Li, Y. Wei, H. Li, K. Yang, M. Ryder, R. Toh, Y. Zhou, M.D. Denton, J. Hu, Y. Wang, Trichoderma harzianum inoculation reduces the incidence of clubroot disease in Chinese cabbage by regulating the rhizosphere microbial community, Microorganisms 8 (2020) 1325.

[36]

Q. Yu, S.B. Powles, Resistance to AHAS inhibitor herbicides: current understanding, Pest Manag. Sci. 70 (2014) 1340–1350.

[37]

C.E. Pandolfo, A. Presotto, M. Poverene, M. Cantamutto, Limited occurrence of resistant radish (Raphanus sativus) to AHAS-inhibiting herbicides in Argentina, Planta Daninha 31 (2013) 657–666.

[38]

M. Rizwan, M. Aslam, M.J. Asghar, G. Abbas, T.M. Shah, H. Shimelis, R.P. Niedz, Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis, PLoS ONE 12 (2017) e0171846.

[39]

M. Xiong, G.S. Yang, D.F. Hong, Z.Y. Wang, Genetic improvement and application of resistance to clubroot in male parent of Brassica napus hybrid Shengguang 168, Chin. J. Oil Crop Sci. 44 (2022) 1182–1189 (in Chinese with English abstract).

[40]

Y. Guo, L.I. Cheng, W. Long, J. Gao, J. Zhang, S. Chen, H. Pu, M. Hu, Synergistic mutations of two rapeseed AHAS genes confer high resistance to sulfonylurea herbicides for weed control, Theor. Appl. Genet. 133 (2020) 2811–2824.

[41]

K.L. Walter, S.D. Strachan, N.M. Ferry, H.H. Albert, L.A. Castle, S.A. Sebastian, Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean, Pest Manag. Sci. 70 (2014) 1831–1839.

[42]

P.T. Do, C.X. Nguyen, H.T. Bui, L.T.N. Tran, G. Stacey, J.D. Gillman, Z.J. Zhang, M. G. Stacey, Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and alpha-linolenic acid phenotype in soybean, BMC Plant Biol. 19 (2019) 311.

[43]

Q. Zhao, J. Wu, G. Cai, Q. Yang, M. Shahid, C. Fan, C. Zhang, Y. Zhou, A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus, Plant Biotechnol. J. 17 (2019) 2313–2324.

[44]

D.B. Deshmukh, B. Marathi, H.K. Sudini, M.T. Variath, S. Chaudhari, S.S. Manohar, C.V.D. Rani, M.K. Pandey, J. Pasupuleti, Combining high oleic acid trait and resistance to late leaf spot and rust diseases in groundnut (Arachis hypogaea L.), Front. Genet. 11 (2020) 514.

[45]

Y. Chen, M. Fu, H. Li, L. Wang, R. Liu, Z. Liu, X. Zhang, S. Jin, High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system, Plant Biotechnol. J. 19 (2021) 424–426.

[46]

H. Zhan, C. Liu, W. Li, Z. Huang, Y. Wang, Y. Xie, J. Xu, B. Xu, W. Long, X. Zhang, Development of high oleic acid canola cultivars using marker-assist backcrossing, Mol. Plant Breed. 19 (2021) 8191–8198 (in Chinese with English abstract).

[47]

C. Fang, Z. Wang, P. Wang, Y. Song, A. Ahmad, F. Dong, D. Hong, G. Yang, Heterosis Derived from nonadditive effects of the BnFLC homologs coordinates early flowering and high yield in rapeseed (Brassica napus L.), Front. Plant Sci. 12 (2022) 798371.

[48]

S. Liu, H. Raman, Y. Xiang, C. Zhao, J. Huang, Y. Zhang, De novo design of future rapeseed crops: challenges and opportunities, Crop J. 10 (2022) 587–596.

[49]

Y. Guo, B. Li, M. Li, H. Zhu, Q. Yang, X. Liu, L. Qu, L. Fan, T. Wang, Efficient marker-assisted breeding for clubroot resistance in elite Pol-CMS rapeseed varieties by updating the PbBa8.1 locus, Mol. Breed. 42 (2022) 41.

[50]

S. Bai, S. Engelen, P. Denolf, J.G. Wallis, K. Lynch, J.D. Bengtsson, M. Van Thournout, B. Haesendonckx, J. Browse, Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils, Plant J. 98 (2019) 33–41.

[51]

C. Li, J. Zhang, Z. Ren, R. Xie, C. Yin, W. Ma, F. Zhou, H. Chen, Y. Lin, Development of ‘multiresistance rice’ by an assembly of herbicide, insect and disease resistance genes with a transgene stacking system, Pest Manag. Sci. 77 (2021) 1536–1547.

[52]

Y. Liu, F. Zhang, X. Luo, D. Kong, A. Zhang, F. Wang, Z. Pan, J. Wang, J. Bi, L. Luo, G. Liu, X. Yu, Molecular breeding of a novel PTGMS line of WDR for broad-spectrum resistance to blast using Pi9, Pi5, and Pi54 Genes, Rice 14 (2021) 96.

[53]

D. Yang, L. Xiong, T. Mou, J. Mi, Improving the resistance of the rice PTGMS line Feng39S by pyramiding blast, bacterial blight, and brown planthopper resistance genes, Crop J. 10 (2022) 1187–1197.

[54]

M. Bhatta, P. Sandro, M.R. Smith, O. Delaney, K.P. Voss-Fels, L. Gutierrez, L.T. Hickey, Need for speed: manipulating plant growth to accelerate breeding cycles, Curr. Opin. Plant Biol. 60 (2021) 101986.

The Crop Journal
Pages 895-903
Cite this article:
Wang Z, Wang F, Yu Z, et al. Pyramiding of multiple genes generates rapeseed introgression lines with clubroot and herbicide resistance, high oleic acid content, and early maturity. The Crop Journal, 2023, 11(3): 895-903. https://doi.org/10.1016/j.cj.2022.10.009

323

Views

6

Downloads

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 27 July 2022
Revised: 29 September 2022
Accepted: 01 October 2022
Published: 24 November 2022
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return