AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Diverse functions of GmNLA1 members in controlling phosphorus homeostasis highlight coordinate response of soybean to nitrogen and phosphorus availability

Ming ZhouYaxue LiXing LuPanmin HeCuiyue Liang( )Jiang Tian( )
Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, China
Show Author Information

Abstract

Nitrogen (N) and phosphorus (P) are two essential mineral nutrients for plant growth, which are required in relative high amount in plants. Plants have evolved a series of strategies for coordinately acquiring and utilizing N and P. However, physiological and molecular mechanisms underlying of N and P interactions remain largely unclear in soybean (Glycine max). In this study, interactions of N and P were demonstrated in soybean as reflected by significant increases of phosphate (Pi) concentration in both leaves and roots by N deficiency under Pi sufficient conditions. A total of four nitrogen limitation adaptation (NLA), encoding RING-type E3 ubiquitin ligase were subsequently identified in soybean genome. Among them, transcription of GmNLA1-1 and GmNLA1-3 was decreased in soybean by N starvation under Pi sufficient conditions, not for GmNLA1-2. Suppression of all three GmNLA1 members was able to increase Pi concentration regardless of the P and N availability in the growth medium, but decrease fresh weight under normal conditions in soybean hairy roots. However, comparted to changes in control lines at two N levels, N deficiency only resulted in a relatively higher increase of Pi concentration in GmNLA1-1 or GmNLA1-3 suppression lines, strongly indicating that GmNLA1-1 and GmNLA1-3 might regulate P homeostasis in soybean response to N starvation. Taken together, our result suggest that redundant and diverse functions present in GmNLA1 members for soybean coordinate responses to P and N availability, which mediate P homeostasis.

References

[1]

A. Medici, G. Krouk, The primary nitrate response: a multifaceted signaling pathway, J. Exp. Bot. 19 (2014) 5567–5576.

[2]

H. Lambers, Phosphorus acquisition and utilization in plants, Annu. Rev. Plant Biol. 73 (2021) 17–42.

[3]

J. Yang, L. Lan, Y. Jin, N. Yu, D. Wang, E. Wang, Mechanisms underlying legume-rhizobium symbioses, J. Integr. Plant Biol. 64 (2022) 244–267.

[4]

G. Philip Robertson, P.M. Vitousek, Nitrogen in agriculture: balancing the cost of an essential resource, Annu. Rev. Environ. Resour. 1 (2009) 97–125.

[5]

N.A. Taliman, Q. Dong, K. Echigo, V. Raboy, H. Saneoka, Effect of phosphorus fertilization on the growth, photosynthesis, nitrogen fixation, mineral accumulation seed yield, and seed quality of a soybean low-phytate line, Plants 8 (2019) 119.

[6]

B. Gu, X. Ju, J. Chang, Y. Ge, P.M. Vitousek, Integrated reactive nitrogen budgets and future trends in China, Proc. Natl. Acad. Sci. U. S. A. 28 (2015) 8792–8797.

[7]

J. Huang, C. Xu, B.G. Ridoutt, X. Wang, P. Ren, Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China, J. Clean. Prod. 159 (2017) 171–179.

[8]

Q. Zhu, W. de Vries, X. Liu, T. Hao, M. Zeng, J. Shen, F. Zhang, Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980–2010, Sci. Total Environ. (2018) 1497–1505.

[9]

J. Tian, X. Wang, Y. Tong, X. Chen, H. Liao, Bioengineering and management for efficient phosphorus utilization in crops and pastures, Curr. Opin. Biotechnol. 23 (2012) 866–871.

[10]

X. Chen, F. Chen, Y. Chen, Q. Gao, X. Yang, L. Yuan, F. Zhang, G. Mi, Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change, Glob. Chang. Biol. 3 (2013) 923–936.

[11]

S. Abel, Phosphate scouting by root tips, Curr. Opin. Biotechnol. 39 (2017) 168–177.

[12]

S. Güsewell, N: P ratios in terrestrial plants: variation and functional significance, New Phytol. 2 (2004) 243–266.

[13]

S. Gusewell, Responses of wetland graminoids to the relative supply of nitrogen and phosphorus, Plant Ecol. 1 (2005) 35–55.

[14]

F. Khan, S. Khan, S. Fahad, S. Faisal, S. Hussain, S. Ali, A. Ali, Effect of different levels of nitrogen and phosphorus on the phenology and yield of maize varieties, Am. J. Sci. 5 (2014) 2582–2590.

[15]

X. Luo, S.J. Mazer, H. Guo, N. Zhang, J. Weiner, S. Hu, Nitrogen: phosphorous supply ratio and allometry in five alpine plant species, Ecol. Evol. 24 (2016) 8881–8892.

[16]

T.W. Rufty, C.T. Mackown, D.W. Israel, Phosphorus stress effects on assimilation of nitrate, Plant Physiol. 1 (1990) 328–333.

[17]

T.W. Rufty, M.Y. Siddiqi, A.D.M. Glass, T.J. Ruth, Altered 13NO3− influx in phosphorus limited plants, Plant Sci. 76 (1991) 43–48.

[18]

J.V. Magalhães, V.M.C. Alves, R F. De Novais, P.R. Mosquim, J.R. Magalhães, F.C. Bahia Filho, D.M. Huber, Nitrate uptake by corn under increasing periods of phosphorus starvation, J. Plant Nutr. 21 (1998) 1753–1763.

[19]

A. Gniazdowska, A. Krawczak, M. Mikulska, A.M.R. Mikulska, Low phosphate nutrition alters bean plants’ ability to assimilate and translocate nitrate, J. Plant Nutr. 3 (1999) 551–563.

[20]

S. Kant, M. Peng, S.J. Rothstein, Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis, PLoS Genet. 3 (2011) e1002021.

[21]

U. Schlüter, M. Mascher, C. Colmsee, U. Scholz, A. Bräutigam, H. Fahnenstich, U. Sonnewald, Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis, Plant Physiol. 3 (2012) 1384–1406.

[22]

W. Yue, Y. Ying, C. Wang, Y. Zhao, C. Dong, J. Whelan, H. Shou, OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters, Plant J. 6 (2017) 1040–1051.

[23]

Y. Ueda, T. Kiba, S. Yanagisawa, Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signaling via transcriptional regulation of SPX genes, Plant J. 3 (2020) 448–466.

[24]

B. Hu, C. Chu, Nitrogen-phosphorus interplay: old story with molecular tale, New Phytol. 4 (2020) 1455–1460.

[25]

J.V. Torres-Rodríguez, M.N. Salazar-Vidal, R.A. Chávez Montes, J.A. Massange-Sánchez, C.S. Gillmor, R.J.H. Sawers, Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.), BMC Plant Biol. 21 (2021) 259.

[26]

H. Liu, H.X. Yang, Wu, C.M. Wu, J.J. Feng, H.J. Qin, D.W. Wang, Overexpressing HRS1 confers hypersensitivity to low phosphate-elicited inhibition of primary root growth in Arabidopsis thaliana, J. Integr. Plant Biol. 51 (2009) 382–392.

[27]

A. Medici, M. Wang, A. Krouk, AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip, Nat. Commun. 6 (2015) 6274.

[28]

Y. Maeda, M. Konishi, T. Kiba, Y. Sakuraba, N. Sawaki, T. Kurai, Y. Ueda, H. Sakakibara, S.A. Yanagisawa, NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis, Nat Commun. 9 (2018) 1376.

[29]

B. Hu, Z. Jiang, W. Wang, Y. Qiu, Z. Zhang, Y. Liu, A. Li, X.G. Gao, L. Liu, Y. Liu, X. Qian, F. Huang, S. Yu, Y. Kang, J.X. Wang, S.C. Cao, L.Z. Zhang, Y. Wang, Q. Xie, S. Kopriva, C. Chu, Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants, Nat. Plants. 4 (2019) 401–413.

[30]

M. Peng, Y.M. Bi, T. Zhu, S.J. Rothstein, Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA, Plant Mol. Biol. 65 (2007a) 775–797.

[31]

M. Peng, C. Hannam, H.L. Gu, Y.M. Bi, S.J. Rothstein, A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation, Plant J. 50 (2007b) 320–337.

[32]

W.Y. Lin, T.K. Huang, T.J. Chiou, Nitrogen limitation adaptation, a target of MicroRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis, Plant Cell 25 (2013) 4061–4074.

[33]

B.S. Park, J.S. Seo, N.H. Chua, Nitrogen limitation adaptation recruits Phosphate2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis, Plant Cell 26 (2014) 454–64.

[34]

S.Y. Yang, W.C. Lu, S.S. Ko, C.M. Sun, J.C. Huang, T.J. Chiou, Upstream open reading frame and phosphate-regulated expression of rice OsNLA1 controls phosphate transport and reproduction, Plant Physiol. 181 (2020) 393–407.

[35]

W.W. Liu, Q. Sun, K. Wang, D.G. Du, W.X. Li, Nitrogen limitation adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis, New Phytol. 214 (2017) 734–744.

[36]

G. Hernández, O. Valdés-López, M. Ramírez, N. Goffard, G. Weiller, Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants, Plant Physiol. 151 (2009) 1221–1238.

[37]

Y. Yang, Y. Tong, X. Li, Y. He, R. Xu, D. Liu, D. Yang, H. Lv, H. Liao, Genetic analysis and fine mapping of phosphorus efficiency locus 1 (PE1) in soybean, Theor. Appl. Genet. 132 (2019) 2847–2858.

[38]

L. Qin, J. Zhao, J. Tian, L. Chen, Z. Sun, Y. Guo, X. Lu, M. Gu, G. Xu, H. Liao, The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean, Plant Physiol. 4 (2012) 1634–1643.

[39]

L.Y. Chen, L. Qin, L.L. Zhou, Z.C. Chen, L.L. Sun, W.F. Wang, Z.H. Lin, J. Zhao, N. Yamaji, J.F. Ma, M. Gu, G.H. Xu, H. Liao, A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean, New Phytol. 22 (2019) 2013–2025.

[40]

Z.J. Yang, Z. Gao, H.W. Zhou, Y. He, Y.X. Liu, Y.L. Lai, J.K. Zheng, X.X. Li, H. Liao, GmPTF1 modifies root architecture responses to phosphate starvation primarily through regulating GmEXPB2 expression in soybean, Plant J. 107 (2021) 525–543.

[41]

M. Nezamivand-Chegini, S. Metzger, A. Moghadam, A. Tahmasebi, A. Koprivova, S. Eshghi, M. Mohammadi-Dehchesmeh, S. Kopriva, A. Niazi a, E. Ebrahimie, Integration of transcriptomic and metabolomic analyses provides insights into response mechanisms to nitrogen and phosphorus deficiencies in soybean, Plant Sci. 326 (2022) 111498.

[42]

Y.B. Xue, B.X. Xiao, S.N. Zhu, X.H. Mo, C.Y. Liang, J. Tian, H. Liao, G. Miriam, GmPHR25, a GmPHR member up-regulated by phosphate starvation, controls phosphate homeostasis in soybean, J. Exp. Bot. 68 (2017) 4951–4967.

[43]

F. Xiang, W. Li, H. Liu, L. Zhou, D. Ding, Z. Zeng, Comparisonon methods of chlorophyll extraction in Camellia Sinensis, J. Tea Commun. 43 (2016) 37–40 (in Chinese with English abstract).

[44]

J. Murphy, J. Riley, A modifed single solution method for the determination of phosphate in natural water, Anal. Chim. Acta. 27 (1962) 31–36.

[45]

K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4, a molecular evolutionary genetic analysis MEGA software version 4.0, Mol. Biol. Evol. 24 (2007) 1596–1599.

[46]

S. Zhu, M. Chen, C. Liang, Y. Xue, S. Lin, J. Tian, Characterization of purple acid phosphatase family and functional analysis of GmPAP7a/7b involved in extracellular ATP utilization in soybean, Front. Plant Sci. 11 (2020) 661.

[47]

W.W. Wu, Y. Lin, P.D. Liu, Q.Q. Chen, J. Tian, C.Y. Liang, Association of extracellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots, J. Exp. Bot. 69 (2018) 603–617.

[48]

R.A. Jefffferson, T.A. Kavanagh, M.W. Bevan, GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J. 6 (1987) 3901–3907.

[49]

P.D. Liu, Y.B. Xue, Z.J. Chen, G.D. Liu, J. Tian, Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes, J. Exp. Bot. 67 (2016) 4141–4154.

[50]

D.P. Schachtman, R. Shin, Nutrient sensing and signaling: NPKS, Annu. Rev. Plant Biol. 58 (2007) 47–69.

[51]

X.H. Mo, M.K. Zhang, C.Y. Liang, L.Y. Cai, J. Tian, Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes, Plant Physiol. Biochem. 139 (2019) 697–706.

[52]

Q. Zhuang, Y. Xue, Z. Yao, S. Zhu, C. Liang, H. Liao, J. Tian, Phosphate starvation responsive GmSPX5 mediates nodule growth through interaction with GmNF-YC4 in soybean (Glycine max), Plant J. 5 (2021) 1422–1438.

[53]
H. Marschner, Functions of mineral nutrients: micronutrients, in: H. Marschner (Ed.), Mineral Nutrition of Higher Plants, Academic Press, London, UK, 1995, pp. 313–404.
[54]

F.W. Smith, W.A. Jackson, Nitrogen enhancement of phosphate transport in roots of Zea mays L.: Ⅰ. Effects of ammonium and nitrate pretreatment, Plant Physiol. 84 (1987) 1314–1318.

[55]

A. Medici, W. Szponarski, P. Dangeville, A. Safi, I.M. Dissanayake, C. Saenchai, A. Emanuel, V. Rubio, B. Lacombe, S. Ruffel, M. Tanurdzic, H. Rouached, G. Krouk, Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants, Plant Cell 5 (2019) 1171–1184.

[56]

Z. Yao, J. Tian, H. Liao, Comparative characterization of GmSPX members reveals that GmSPX3 is involved in phosphate homeostasis in soybean, Ann. Bot. 114 (2014) 477–88.

[57]

J. Du, Z. Tian, Y. Sui, M. Zhao, Q. Song, S.B. Cannon, P. Cregan, J. Ma, Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean, Plant Cell 1 (2012) 21–32.

[58]

Z.H. Zhang, T. Zhou, Q. Liao, J.Y. Yao, G.H. Liang, H.X. Song, C.Y. Guan, Y.P. Hua. Integrated physiologic, genomic and transcriptomic strategies involving the adaptation of allotetraploid rapeseed to nitrogen limitation, BMC Plant Biol. 18 (2018) 322.

[59]

J. Liu, L. Yang, M. Luan, Y. Wang, C. Zhang, B. Zhang, J. Shi, F. Zhao, W. Lan, S. Luan, A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) e6571-e6578.

[60]

T. Liu, T. Huang, S. Yang, Y. Hong, S. Huang, F. Wang, S. Chiang, S. Tsai, W. Lu, T. Chiou, Identification of plant vacuolar transporters mediating phosphate storage, Nat. Commun. 7 (2016) 11095.

[61]

N. Yamaji, Y. Takemoto, T. Miyaji, N. Mitani-Ueno, K.T. Yoshida, J.F. Ma, Reducing phosphorus accumulation in rice grains with an impaired transporter in the node, Nature 541 (2017) 92–95.

The Crop Journal
Pages 1251-1260
Cite this article:
Zhou M, Li Y, Lu X, et al. Diverse functions of GmNLA1 members in controlling phosphorus homeostasis highlight coordinate response of soybean to nitrogen and phosphorus availability. The Crop Journal, 2023, 11(4): 1251-1260. https://doi.org/10.1016/j.cj.2022.12.003

248

Views

5

Downloads

1

Crossref

1

Web of Science

1

Scopus

1

CSCD

Altmetrics

Received: 24 August 2022
Revised: 18 November 2022
Accepted: 02 December 2022
Published: 24 December 2022
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return