AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Multiplex genome editing targeting soybean with ultra-low anti-nutritive oligosaccharides

Wenxin Lina,1Huaqin Kuangb,c,1Mengyan BaidXiaomeng JiangdPengfei ZhoueYinghua LifBo ChenfHuarong LifYuefeng Guanb,c( )
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
KingAgroot CropScience Co., Ltd., Qingdao 266500, Shandong, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Soybean is the primary source of plant protein for humans. Owing to the indigestibility of the raffinose family of oligosaccharides (RFO), raffinose and stachyose are considered anti-nutritive factors in soybean seeds. Low-RFO soybean cultivars are generated by mutagenesis of RFO biosynthesis genes, but the carbohydrate profiles invite further modification to lower RFOs. This study employed a pooled multiplex genome editing approach to target four seed-specifically expressed genes mediating RFO biosynthesis, encoding three raffinose synthases (RS2, RS3, and RS4) and one stachyose synthase. In T1 progeny, rs2/rs3 and rs4/sts homozygous double mutants and a rs2/rs3/rs4/sts quadruple mutant (rfo-4m) were characterized. The rs2/rs3 mutant showed reduced raffinose and stachyose contents, but the rs4/sts mutant showed only reduced stachyose in seeds. The RFO contents in the rfo-4m mutant were almost eliminated. Metabolomic analysis showed that the mutation of four RFO biosynthesis genes led to a shift of metabolic profile in the seeds, including the accumulation of several oligosaccharides-related metabolites. These mutants could contribute to precision breeding of soybean cultivars for soy food production.

References

[1]

F.R. Steggerda, E.A. Richards, J.J. Rackis, Effects of various soybean products on flatulence in the adult man, Proc. Soc. Exp. Biol. Med. 121 (1966) 1235–1239.

[2]

J.J. Rackis, Flatulence caused by soya and its control through processing, J. Am. Oil Chem. Soc. 58 (1981) 503–509.

[3]

E.B. Çelem, S. Önal, Removal of raffinose family oligosaccharides from soymilk by α-Galactosidase immobilized on sepabeads EC-EA and sepabeads EC-HA, ACS Food Sci. Technol. 2 (2022) 1266–1275.

[4]

D. Elango, K. Rajendran, L.Van der Laan, S. Sebastiar, J. Raigne, N.A. Thaiparambil, N.E. Haddad, B. Raja, W. Wang, A. Ferela, K.O. Chiteri, M. Thudi, R.K. Varshney, S. Chopra, A. Singh, A.K. Singh, Raffinose family oligosaccharides: friend or foe for human and plant health? Front. Plant Sci. 13 (2022) 829118.

[5]

E.C. Dierking, K.D. Bilyeu, Association of a soybean raffinose synthase gene with low raffinose and stachyose seed phenotype, Plant Genome 1 (2008) 133–145.

[6]

F.L. Suarez, J. Springfield, J.K. Furne, T.L. Lohrmann, P.S. Kerr, M.D. Levitt, Gas production in human ingesting a soybean flour derived from beans naturally low in oligosaccharides, Am. J. Clin. Nutr. 69 (1999) 135–139.

[7]

M.F. Valentine, J.R. De Tar, M. Mookkan, J.D. Firman, Z.J. Zhang, Silencing of soybean raffinose synthase gene reduced raffinose family oligosaccharides and increased true metabolizable energy of poultry feed, Front. Plant Sci. 8 (2017) 692.

[8]

D. Qiu, T. Vuong, B. Valliyodan, H. Shi, B. Guo, J.G. Shannon, H.T. Nguyen, Identification and characterization of a stachyose synthase gene controlling reduced stachyose content in soybean, Theor. Appl. Genet. 128 (2015) 2167–2176.

[9]

H. Le, N.H. Nguyen, D.T. Ta, T.N.T. Le, T.P. Bui, N.T. Le, C.X. Nguyen, H. Rolletschek, G. Stacey, M.G. Stacey, N.B. Pham, P.T. Do, H.H. Chu, CRISPR/Cas9-mediated knockout of galactinol synthase-encoding genes reduces raffinose family oligosaccharide levels in soybean seeds, Front. Plant Sci. 11 (2020) 612942.

[10]

K. Chen, Y. Wang, R. Zhang, H. Zhang, C. Gao, CRISPR/Cas genome editing and precision plant breeding in agriculture, Annu. Rev. Plant Biol. 70 (2019) 667–697.

[11]

X. Zhan, Y. Lu, J.K. Zhu, J.R. Botella, Genome editing for plant research and crop improvement, J. Integr. Plant Biol. 63 (2021) 3–33.

[12]

J. Li, H. Li, J. Chen, J.L. Yan, L. Xia, Toward precision genome editing in crop plants, Mol. Plant 13 (2020) 811–813.

[13]

Y. Cai, L. Wang, L. Chen, T. Wu, L. Liu, S. Sun, C. Wu, W. Yao, B. Jiang, S. Yuan, T. Han, W. Hou, Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean, Plant Biotechnol. J. 18 (2020) 298–309.

[14]

P. Zhang, H. Du, J. Wang, Y. Pu, C. Yang, R. Yan, H. Yang, H. Cheng, D. Yu, Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus, Plant Biotechnol. J. 18 (2020) 1384–1395.

[15]

Y. Cai, L. Chen, X. Liu, C. Guo, S. Sun, C. Wu, B. Jiang, T. Han, W. Hou, CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean, Plant Biotechnol. J. 16 (2018) 176–185.

[16]

S. Lu, L. Dong, C. Fang, S. Liu, L. Kong, Q. Cheng, L. Chen, T. Su, T.H. Nan, D. Zhang, L. Zhang, Z. Wang, Y. Yang, D. Yu, X. Liu, Q. Yang, X. Lin, Y. Tang, X. Zhao, X. Yang, C. Tian, Q. Xie, X. Li, X. Yuan, Z. Tian, B. Liu, J.L. Weller, F. Kong, Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication, Nat. Genet. 52 (2020) 428–436.

[17]
T. Bu, S. Lu, K. Wang, L. Dong, S. Li, Q. Xie, X. Xu, Q. Cheng, L. Chen, C. Fang, H. Li, B. Liu, J.L. Weller, F. Kong, A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation, Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2010241118.
[18]

Q. Shan, Y. Zhang, K. Chen, K. Zhang, C. Gao, Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology, Plant Biotechnol. J. 13 (2015) 791–800.

[19]

J. Wu, C. Chen, G. Xian, D. Liu, L. Lin, S. Yin, Q. Sun, Y. Fang, H. Zhang, Y. Wang, Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing, Plant Biotechnol. J. 18 (2020) 1857–1859.

[20]

X. Qi, C. Zhang, J. Zhu, C. Liu, C. Huang, X. Li, X.C. Xie, Genome editing enables next-generation hybrid seed production technology, Mol. Plant 13 (2020) 1262–1269.

[21]

C. Wang, Q. Liu, Y. Shen, Y. Hua, J. Wang, J. Lin, M. Wu, T. Sun, Z. Cheng, R. Mercier, K. Wang, Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes, Nat. Biotechnol. 37 (2019) 283–286.

[22]

H. Yu, T. Lin, X. Meng, H. Du, J. Zhang, G. Liu, M. Chen, Y. Jing, L. Kou, X. Li, Q. Gao, Y. Liang, X. Liu, Z. Fan, Y. Liang, Z. Cheng, M. Chen, Z. Tian, Y. Wang, C. Chu, J. Zuo, J. Wan, Q. Qian, B. Han, A. Zuccolo, R.A. Wing, C. Gao, C. Liang, J. Li, A route to de novo domestication of wild allotetraploid rice, Cell 184 (2021) 1156–1170.

[23]

Y. Cai, L. Chen, Y. Zhang, S. Yuan, Q. Su, S. Sun, C. Wu, W. Yao, T. Han, W. Hou, Target base editing in soybean using a modified CRISPR/Cas9 system, Plant Biotechnol. J. 18 (2020) 1996–1998.

[24]

C.X. Nguyen, K.J. Paddock, Z. Zhang, M.G. Stacey, GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1, New Phytol. 229 (2021) 920–934.

[25]

M. Bai, C. Yuan, H. Kuang, Q. Sun, X. Hu, L. Cui, W. Lin, C. Peng, P. Yue, S. Song, Z. Guo, Y. Guan, Combination of two multiplex genome-edited soybean varieties enables customization of protein functional properties, Mol. Plant 15 (2022) 1081–1083.

[26]

M. Bai, J. Yuan, H. Kuang, P. Gong, S. Li, Z. Zhang, B. Liu, J. Sun, M. Yang, L. Yang, D. Wang, S. Song, Y. Guan, Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soybean, Plant Biotechnol. J. 18 (2020) 721–731.

[27]

Lee, J.H., Won, H.J., Oh, E.S., Oh, M.H. and Jung, J.H. Golden gate cloning-compatible DNA replicon/2A-mediated polycistronic vectors for plants. Front Plant Sci. 11 (2020) 559365.

[28]

J. Wang, H. Kuang, Z. Zhang, Y. Yang, L. Yan, M. Zhang, S. Song, Y. Guan, Generation of seed lipoxygenase-free soybean using CRISPR-Cas9, Crop J. 8 (2020) 432–439.

[29]

Q. Liu, C. Wang, X. Jiao, H. Zhang, L. Song, Y. Li, C. Gao, K. Wang, Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems, Sci. China Life Sci. 62 (2019) 1–7.

[30]

N. Yang, J. Jiang, H. Xie, M. Bai, Q. Xu, X. Wang, X. Yu, Z. Chen, Y. Guan, Metabolomics reveals distinct carbon and nitrogen metabolic responses to magnesium deficiency in leaves and roots of soybean [Glycine max (L.) Merr.], Front. Plant Sci. 8 (2017) 2091.

[31]

X. Tang, Q. Ren, L. Yang, Y. Bao, Z. Zhong, Y. He, S. Liu, C. Qi, B. Liu, Y. Wang, S. Sretenovic, Y. Zhang, X. Zheng, T. Zhang, Y. Qi, Y. Zhang, Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing, Plant Biotechnol. J. 17 (2019) 1431–1445.

[32]

R. Li, Z. Qiu, X. Wang, P. Gong, Q. Xu, Q. Yu, Y. Guan, Pooled CRISPR/Cas9 reveals redundant roles of plastidial phosphoglycerate kinases in carbon fixation and metabolism, Plant J. 98 (2019) 1078–1089.

[33]

T. Li, Y. Zhang, D. Wang, Y. Liu, L.M.A. Dirk, J. Goodman, A.B. Downie, J. Wang, G. Wang, T. Zhao, Regulation of seed vigor by manipulation of raffinose family oligosaccharides in maize and Arabidopsis thaliana, Mol. Plant 10 (2017) 1540–1555.

[34]

E.C. Dierking, K.D. Bilyeu, Raffinose and stachyose metabolism are not required for efficient soybean seed germination, J. Plant Physiol. 166 (2009) 1329–1335.

The Crop Journal
Pages 825-831
Cite this article:
Lin W, Kuang H, Bai M, et al. Multiplex genome editing targeting soybean with ultra-low anti-nutritive oligosaccharides. The Crop Journal, 2023, 11(3): 825-831. https://doi.org/10.1016/j.cj.2023.01.001

472

Views

11

Downloads

5

Crossref

1

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 12 September 2022
Revised: 26 November 2022
Accepted: 02 January 2023
Published: 21 January 2023
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return