PDF (1.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research paper | Open Access

The KL system in wheat permits homoeologous crossing over between closely related chromosomes

Chaolan Fana,b,cJiangtao LuodJiaojiao SuncHong ChencLiqiong LicLanyue ZhangcXue ChencYazhou LiaShunzong NingcZhongwei YuancBo JiangcLianquan ZhangaXuejiao ChencAdam J. Lukaszewskib()Dengcai Liua,c()Ming Haoa()
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
Crop Research Institute, Sichuan Academic of Agricultural Science, Chengdu 610066, Sichuan, China
Show Author Information

Abstract

The Chinese wheat landrace Kaixianluohanmai (KL) expresses the ph-like phenotype. A major QTL, QPh.sicau-3A (syn. phKL), responsible for this effect has been mapped to chromosome arm 3AL. This study presents some characteristics of homoeologous pairing and recombination induced by phKL. In KL haploids, the level of homoeologous pairing was elevated relative to Ph1 Chinese Spring (CS) haploids. There was a clear preference for A–D pairing and less frequent for A–B and B–D, reflecting the higher levels of affinity between genomes A and D in wheat. The characteristics of pairing were affected by temperature and magnesium ion supplementation. The suitability of phKL for chromosome engineering was tested on three pairs of homoeologues: 2Sv-2B, 2Sv-2D, and 2RL-2BL. The recombination rates were 1.68%, 0.17%, and 0%, respectively. The phKL locus in KL induced a moderate level of homoeologous chromosome pairing and recombination when the Ph1 locus of wheat was present, both in wheat haploids and hexaploids. The Ph1-imposed criteria for chromosome pairing and crossing over were relaxed to some degree, permitting homoeologous crossing over but only between closely related chromosomes; there was no crossing over between more differentiated chromosomes. Therefore, the phKL system (QPh.sicau-3A) can be a useful tool in chromosome engineering of wheat to transfer genes from closely related species with the benefit of reduced genomic chaos generated by the ph1b mutation.

References

[1]

J. Masterson, Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms, Science 264 (1994) 421–424.

[2]

K.W. Hilu, Polyploidy and the evolution of domesticated plants, Am. J. Bot. 80 (1993) 1494–1499.

[3]

G.G. Doyle, The allotetraploidization of maize: 4. cytological and genetic evidence indicative of substantial progress, Theor. Appl. Genet. 71 (1986) 585–594.

[4]

E. Jenczewski, K. Alix, From diploids to alloploids: the emergence of efficient pairing control genes in plants, Crit. Rev. Plant Sci. 23 (2004) 21–45.

[5]

E.R. Sears, M. Okamoto, Intergenomic chromosome relationships in hexaploid wheat, Proc. Int. Congress Genet. 2 (1958) 258–259.

[6]

R. Riley, V. Chapman, Genetic control of the cytologically diploid behaviour of hexaploid wheat, Nature 13 (1958) 713–715.

[7]

J. Dvorak, P. McGuire, Nonstructural chromosome differentiation among wheat cultivars with special reference to differentiation of chromosomes in related species, Genetics 97 (1981) 391–414.

[8]

C. Fan, M. Hao, Z. Jia, C. Neri, X. Chen, W. Chen, D. Liu, A.J. Lukaszewski, Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye, Plant J. 105 (2021) 1665–1676.

[9]

S. Griffiths, R. Sharp, T.N. Foote, I. Bertin, M. Wanous, S. Reader, I. Colas, G. Moore, Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat, Nature 439 (2006) 749–752.

[10]

N. Al-Kaff, E. Knight, I. Bertin, T. Foote, N. Hart, S. Griffiths, G. Moore, Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling, Ann. Bot. 101 (2008) 863–872.

[11]

F.K. Yousafzai, N. Al-Kaff, G. Moore, Structural and functional relationship between the Ph1 locus protein 5B2 in wheat and CDK2 in mammals, Funct. Integr. Genomics 10 (2010) 157–166.

[12]

R. Bhullar, R. Nagarajan, H. Bennypaul, G.K. Sidhu, G. Sidhu, S. Rustigi, V.D. Wettstein, K.S. Gill, Silencing of a metaphase I-specific gene results in a phenotype similar to that of the Pairing homoeologous (Ph1) gene mutations, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 14187–14192.

[13]

K.S. Rawale, M.A. Khan, K.S. Gill, The novel function of the Ph1 gene to differentiate homologs from homoeologs evolved in Triticum turgidum ssp. dicoccoides via a dramatic meiosis-specific increase in the expression of the 5B copy of the C-Ph1 gene, Chromosoma 128 (2019) 561–570.

[14]

M.D. Rey, A.C. Martín, J. Higgins, D. Swarbreck, C. Uauy, P. Shaw, G. Moore, Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids, Mol. Breed. 37 (2017) 95.

[15]

M.D. Rey, A.C. Martín, M. Smedley, S. Hayta, W. Harwood, P. Shaw, G. Moore, Magnesium increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 gene) mutant wheat-wild relative hybrids, Front. Plant Sci. 20 (2018) 509.

[16]

S. Ortega, I. Prieto, J. Odajima, A. Martin, P. Dubus, R. Sotillo, J.L. Barbero, M. Malumbres, M. Barbacid, Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice, Nat. Genet. 35 (2003) 25–31.

[17]

A. Viera, J.S. Rufas, I. Martínez, J.L. Barbero, S. Ortega, J.A. Suja, CDK2 is required for proper homologous pairing, recombination and sex-body formation during male mouse meiosis, J. Cell Sci. 122 (2009) 2149–2159.

[18]

C, Lambing, F.C. Franklin, C.J. Wang, Understanding and manipulating meiotic recombination in plants, Plant Physiol. 173 (2017) 1530–1542.

[19]

T. Mello-Sampayo, Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum, Nat. New Biol. 230 (1971) 22–23.

[20]

C.J. Driscoll, Genetic suppression of homoeologous chromosome pairing in hexaploid wheat, Can. J. Genet. Cytol. 14 (1972) 39–42.

[21]

T. Sutton, R. Whitford, U. Baumann, C. Dong, J.A. Able, P. Langridge, The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach, Plant J. 36 (2003) 443–456.

[22]

H. Serra, R. Svačina, U. Baumann, R. Whitford, T. Sutton, J. Bartoš, P. Sourdille, Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination, Nat. Commun. 12 (2021) 803.

[23]

S.M. Tam, J.B. Hays, R.T. Chetelat, Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato, Theor. Appl. Genet. 123 (2011) 1445–1458.

[24]

L. Li, M. Jean, F. Belzile, The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis, Plant J. 45 (2006) 908–916.

[25]

C.J. Driscoll, Minor genes affecting homoeologous pairing in hybrids between wheat and related genera, Genetics 74 (1973) s66.

[26]
Research Bulletin No. 572, Agricultural Experiment Station.
[27]

M. Feldman, The effect of chromosomes 5B, 5D, and 5A on chromosomal pairing in Triticum aestivum, Proc. Natl. Acad. Sci. U. S. A. 55 (1966) 1447–1453.

[28]

R. Riley, V. Chapman, Effect of 5BS in suppressing the expression of altered dosage of 5BL on meiotic chromosome pairing in Triticum aestivum, Nature 216 (1967) 60–62.

[29]

Y. Gyawali, W. Zhang, S. Chao, S. Xu, X. Cai, Delimitation of wheat ph1b deletion and development of ph1b-specific DNA markers, Theor. Appl. Genet. 132 (2019) 195–204.

[30]

M. Hao, L. Zhang, S. Ning, L. Huang, Z. Yuan, B. Wu, Z. Yan, S. Dai, B. Jiang, Y. Zheng, D. Liu, The resurgence of introgression breeding, as exemplified in wheat improvement, Front. Plant Sci. 11 (2020) 252.

[31]

E. Sánchez-Morán, E. Benavente, J. Orellana, Analysis of karyotypic stability of homoeologous-pairing (ph) mutants in allopolyploid wheats, Chromosoma 110 (2001) 371–377.

[32]

A.C. Martín, P. Borrill, J. Higgins, A. Alabdullah, R.H. Ramírez-González, D. Swarbreck, C. Uauy, P. Shaw, G. Moore, Genome-wide transcription during early wheat meiosis is independent of synapsis, ploidy level, and the Ph1 locus, Front. Plant Sci. 9 (2018) 1791.

[33]
M.C. Luo, Z.L.Yang, C. Yen, J.L. Yang, The cytogenetic investigation on F1 hybrid of Chinese wheat landrace, in: Z.L. Ren, J.H. Peng (Eds.), Exploration of Crop Breeding, Science and Technology Press of Sichuan, Sichuan, China, 1992, pp. 169–176.
[34]

D.C. Liu, C. Yen, J.L. Yang, Evaluation of crosses of bread wheat cv. Kaixianluohanmai with alien species, Acta. Agron. Sin. 25 (1999) 777–781.

[35]

Z.G. Xiang, D.C. Liu, Y.L. Zheng, L.Q. Zhang, Z.H. Yan, The effect of phKL gene on homoeologous pairing of wheat-alien hybrids is situated between gene mutants of Ph1 and Ph2, Hereditas 27 (2005) 935–940.

[36]

C. Fan, J. Luo, S. Zhang, M. Liu, Q. Li, Y. Li, L. Huang, X. Chen, S. Ning, Z. Yuan, L. Zhang, J. Wang, Y. Zheng, D. Liu, M. Hao, Genetic mapping of a major QTL promoting homoeologous chromosome pairing in a wheat landrace, Theor. Appl. Genet. 132 (2019) 2155–2166.

[37]

R.A. Fischer, R. Maurer, Crop temperature modification and yield potential in a dwarf spring wheat, Crop Sci. 16 (1976) 855–859.

[38]

I. Barclay, High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination, Nature 256 (1975) 410–411.

[39]

L. Zhao, S. Ning, J. Yu, M. Hao, L. Zhang, Z. Yuan, Y. Zheng, D. Liu, Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat, Breed. Sci. (2016) 16011.

[40]

L.C. Alonso, G. Kimber, The analysis of meiosis in hybrids. II. Triploid hybrids, Can. J. Genet. Cytol. 23 (1981) 221–234.

[41]

T. Naranjo, P, Fernández-Rueda, Pairing and recombination between individual chromosomes of wheat and rye in hybrids carrying the phlb mutation, Theor. Appl. Genet. 93 (1996) 242–248.

[42]

P. Sourdille, S. Singh, T. Cadalen, G.L. Brown­Guedira, G. Gay, L.L. Qi, B.S. Gill, P. Dufour, A. Murigneux, M. Bernard, Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.), Funct. Integr. Genomics 4 (2004) 12–25.

[43]

J.C. Zadoks, T.T. Chang, C.F. Konzak, A decimal code for the growth stages of cereals, Weed. Res. 14 (1974) 415–421.

[44]

C. Chen, H. Chen, Y. Zhang, H.R. Thomas, M.H. Frank, Y. He, R. Xia, TBtools: an integrative toolkit developed for interactive analyses of big biological data, Mol. Plant 13 (2020) 1194–1202.

[45]

P. Sarkar, G.L. Stebbins, Morphological evidence concerning the origin of the B genome in wheat, Am. J. Bot. 43 (1956) 297–304.

[46]

R. Riley, J. Unrau, V, Chapman, Evidence on the origin of the B genome of wheat, J. Hered. 49 (1958) 91–98.

[47]

J. Salse, V. Chagué, S. Bolot, G. Magdelenat, C. Huneau, C. Pont, H. Belcram, A. Couloux, S. Gardais, A. Evrard, B. Segurens, New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides, BMC Genomics 9 (2008) 555.

[48]

Y. Miki, K. Yoshida, N. Mizuno, S. Nasuda, K. Sato, S. Takumi, Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops, DNA Res. 26 (2019) 171–182.

[49]

R. Appels, K. Eversole, N. Stein, C. Feuillet, B. Keller, J. Rogers, C.J. Pozniak, F. Choulet, A. Distelfeld, J. Poland, G. Ronen, Shifting the limits in wheat research and breeding using a fully annotated reference genome, Science 361 (2018) eaar7191.

[50]

S. Komuro, R. Endo, K. Shikata, A. Kato, Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure, Genome 56 (2013) 131–137.

[51]

Z. Tang, M. Li, L. Chen, Y.Y. Wang, Z.L. Ren, S.L. Fu, New types of wheat chromosomal structural variations in derivatives of wheat-rye hybrids, PLoS ONE 9 (2014) e110282.

[52]

J.J. Doyle, J.L. Doyle, A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Photochem. Bull. 19 (1987) 11–15.

[53]

T. Zhu, L. Wang, H. Rimbert, J.C. Rodriguez, K.R. Deal, R. de Oliveira, F. Choulet, G. Keeble-Gagnère, J. Tibbits, J. Rogers, K. Eversole, Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly, Plant J. 107 (2021) 303–314.

[54]

B. Fernandez-Calvin, J. Orellana, Metaphase I bound arms frequency and genome analysis in wheat-Aegilops hybrids. 1. Ae. variabilis-wheat and Ae. kotschyi-wheat hybrids with low and high homoeologous pairing, Theor. Appl. Genet. 83 (1991) 264–272.

[55]

C.P. Middleton, N. Senerchia, N. Stein, E.D. Akhunov, B. Keller, T. Wicker, B. Kilian, Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe, PLoS ONE 9 (2014) e85761.

[56]
T. Naranjo, E. Benavente, The mode and regulation of chromosome pairing in wheat-alien hybrids (Ph genes, an updated view). in: M. Molnár-Láng, C. Ceoloni, J. Doležel (Eds.) Alien Introgression in Wheat, Springer, Cham, Switzerland, 2015, pp. 133–162.
[57]

P.P. Jauhar, O. Riera-Lizarazu, W.G. Dewey, B.S. Gill, C.F. Crane, J.H. Bennett, Chromosome pairing relationships among the A, B and D genomes of bread wheat, Theor. Appl. Genet. 82 (1991) 441–449.

[58]

A.J. Lukaszewski, K. Rybka, V. Korzun, S.V. Malyshev, B. Lapinski, R. Whitkus, Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R, Genome 47 (2004) 36–45.

[59]

W. Zhang, X. Zhu, M. Zhang, S. Chao, S. Xu, X. Cai, Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum, Theor. Appl. Genet. 131 (2018) 2381–2395.

[60]

A.J. Lukaszewski, B. Lapinski, K. Rybka. Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat, Cytogenet. Genome Res. 109 (2005) 373–377.

[61]

A.C. Martín, M.D. Rey, P. Shaw, G. Moore, Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover, Chromosoma 126 (2017) 669–680.

[62]

D. Phillips, G. Jenkins, M. Macaulay, C. Nibau, J. Wnetrzak, D. Fallding, I. Colas, H. Oakey, R. Waugh, L. Ramsay, The effect of temperature on the male and female recombination landscape of barley, New Phytol. 208 (2015) 421–429.

[63]

A. Coulton, A.J. Burridge, K.J. Edwards, Examining the effects of temperature on recombination in wheat, Front. Plant Sci. 11 (2020) 230.

[64]

L. Ranjha, R. Anand, P. Cejka, The Saccharomyces cerevisiae Mlh1-Mlh3 heterodimer is an endonuclease that preferentially binds to Holliday junctions, J. Biol. Chem. 289 (2014) 5674–5686.

[65]

H. Kihara, Discovery of the DD-analyser, one of the ancestors of Triticum vulgare, Agric. Hort. 19 (1944)13–14.

[66]

E.S. McFadden, E.R. Sears, The artificial synthesis of Triticum spelta, Rec. Genet. Soc. Am. 13 (1944) 26–27.

[67]

L.F. Li, Z.B. Zhang, Z.H. Wang, N. Li, Y. Sha, X.F. Wang, N. Ding, Y. Li, J. Zhao, Y. Wu, L. Gong, F. Mafessoni, A.A. Levy, B. Liu, Genome sequences of the five Sitopsis species of Aegilops and the origin of polyploid wheat B-subgenome, Mol. Plant 15 (2022) 488–503.

[68]

R. Avni, T, Lux, A, Minz-Dub, E. Millet, H. Sela, A. Distelfeld, J. Deek, G. Yu, B. Steuernagel, C. Pozniak, J. Ens, Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement, Plant J. 38 (2022) 307–309.

The Crop Journal
Pages 808-816
Cite this article:
Fan C, Luo J, Sun J, et al. The KL system in wheat permits homoeologous crossing over between closely related chromosomes. The Crop Journal, 2023, 11(3): 808-816. https://doi.org/10.1016/j.cj.2023.01.003
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return