AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Two soybean homologues of TERMINAL FLOWER 1 control flowering time under long day conditions

Lingshuang Wanga,1Chun Linb,1Bohui Lia,1Tong SuaShichen LiaHaiyang LicFanglei HebChuanjie GouaZheng ChenaYanan WangaJun QindBaohui LiuaFanjiang KongaLin Yuea( )Sijia Lua( )Chao Fanga( )
Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
Institute of Cereal & Oil Crop, Hebei Academy of Agricultural and Forestry Sciences, Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, Hebei, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Flowering time is a key agronomic trait that directly affect the adaptation and yield of soybean. After whole genome duplications, about 75% of genes being represented by multiple copies in soybean. There are four TERMINAL FLOWER 1 (TFL1) genes in soybean, and the TFL1b (Dt1) has been characterized as the determinant of stem growth habit. The function of other TFL1 homologs in soybean is still unclear. Here, we generated knockout mutants by CRISPR/Cas9 genome editing technology and found that the tfl1c/tfl1d double mutants flowered significantly earlier than wild-type plants. We investigated that TFL1c and TFL1d could physically interact with the bZIP transcription factor FDc1 and bind to the promoter of APETALA1a (AP1a). RNA-seq and qRT-PCR analyses indicated that TFL1c and TFL1d repressed the expressions of the four AP1 homologs and delayed the flowering time in soybean. The two genes play important roles in the regulation of flowering time in soybean and mainly act as the flowering inhibitors under long-day conditions. Our results identify novel components in the flowering-time regulation network of soybean and will be invaluable for molecular breeding of improved soybean yield.

References

[1]

L. Zhang, W. Liu, M. Tsegaw, X. Xu, Y. Qi, E. Sapey, L. Liu, T. Wu, S. Sun, T. Han, Principles and practices of the photo-thermal adaptability improvement in soybean, J. Integr. Plant Biol. 20 (2020) 295-310.

[2]

L. Dong, C. Fang, Q. Cheng, T. Su, K. Kou, L. Kong, C. Zhang, H. Li, Z. Hou, Y. Zhang, L. Chen, L. Yue, L. Wang, K. Wang, Y. Li, Z. Gan, X. Yuan, J. Weller, S. Lu, F. Kong, B. Liu, Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics, Nat. Commun 5445 (2021) 12.

[3]

L. Dong, Q. Cheng, C. Fang, L. Kong, H. Yang, Z. Hou, Y. Li, H. Nan, Y. Zhang, Q. Chen, C. Zhang, K. Kou, T. Su, L. Wang, S. Li, H. Li, X. Lin, Y. Tang, X. Zhao, S. Lu, B. Liu, F. Kong, Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes, Mol. Plant 15 (2022) 308-321.

[4]

C. Fang, J. Liu, T. Zhang, T. Su, S. Li, Q. Cheng, L. Kong, X. Li, T. Bu, H. Li, L. Dong, S. Lu, F. Kong, B. Liu, A recent retrotransposon insertion of J caused E6 locus facilitating soybean adaptation into low latitude, J. Integr. Plant Biol. 63 (2021) 995-1003.

[5]

X. Li, C. Fang, Y. Yang, T. Lv, T. Su, L. Chen, H. Nan, S. Li, X. Zhao, S. Lu, L. Dong, Q. Cheng, Y. Tang, M. Xu, J. Abe, X. Hou, J.L. Weller, F. Kong, B. Liu, Overcoming the genetic compensation response of soybean florigens to improve adaptation and yield at low latitudes, Curr. Biol. 31 (2021) 3755-3767.

[6]

X. Lin, B. Liu, J.L. Weller, J. Abe, F. Kong, Molecular mechanisms for the photoperiodic regulation of flowering in soybean, J. Integr. Plant Biol. 63 (2021) 981-994.

[7]

X. Lin, L. Dong, Y. Tang, H. Li, Q. Cheng, H. Li, T. Zhang, L. Ma, H. Xiang, L. Chen, H. Nan, C. Fang, S. Lu, J. Li, B. Liu, F. Kong, Novel and multifaceted regulations of photoperiodic flowering by phytochrome A in soybean, Proc. Natl. Acad. Sci. U. S. A. 41 (2022) 119.

[8]

S. Lu, X. Zhao, Y. Hu, S. Liu, H. Nan, X. Li, C. Fang, D. Cao, X. Shi, L. Kong, T. Su, F. Zhang, S. Li, Z. Wang, X. Yuan, E.R. Cober, J.L. Weller, B. Liu, X. Hou, Z. Tian, F. Kong, Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield, Nat. Genet. 49 (2017) 773-779.

[9]

S. Lu, L. Dong, C. Fang, S. Liu, L. Kong, Q. Cheng, L. Chen, T. Su, H. Nan, D. Zhang, L. Zhang, Z. Wang, Y. Yang, D. Yu, X. Liu, Q. Yang, X. Lin, Y. Tang, X. Zhao, X. Yang, C. Tian, Q. Xie, X. Li, X. Yuan, Z. Tian, B. Liu, J. Weller, F. Kong, Stepwise selection on homologues PRR genes controlling flowering and maturity during soybean domestication, Nat. Genet. 52 (2020) 428-436.

[10]

L. Wang, C. Fang, J. Liu, T. Zhang, K. Kou, T. Su, S. Li, L. Chen, Q. Cheng, L. Dong, F. Kong, B. Liu, S. Lu, Identification of major QTLs for flowering and maturity in soybean by genotyping-by-sequencing analysis, Mol. Breed. 40 (2020) 99.

[11]

L. Wang, H. Li, M. He, L. Dong, Z. Huang, L. Chen, H. Nan, F. Kong, B. Liu, X. Zhao, GIGANTEA orthologs, E2 members, redundantly determine photoperiodic flowering and yield in soybean, J. Integr. Plant Biol. 65 (2023) 188-202.

[12]

F. Kong, B. Liu, Z. Xia, S. Sato, B. Kim, S. Watanabe, T. Yamada, S. Tabata, A. Kanazawa, K. Harada, J. Abe, Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean, Plant Physiol. 154 (2010) 1220-1231.

[13]

L. Chen, H. Nan, L. Kong, L. Yue, H. Yang, Q. Zhao, C. Fang, H. Li, Q. Cheng, S. Lu, F. Kong, B. Liu, L. Dong, Soybean AP1 homologs control flowering time and plant height, J. Integr. Plant Biol. 62 (2020) 1868-1879.

[14]

K. Kou, H. Yang, H. Li, C. Fang, L. Chen, L. Yue, H. Nan, L. Kong, X. Li, F. Wang, J. Wang, H. Du, Z. Yang, Y. Bi, Y. Lai, L. Dong, Q. Cheng, T. Su, L. Wang, S. Li, Z. Hou, S. Lu, Y. Zhang, Z. Che, D. Yu, X. Zhao, B. Liu, F. Kong, A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation, Curr. Biol. 32 (2022) 1728-1742.

[15]

B. Liu, S. Watanabe, T. Uchiyama, F. Kong, A. Kanazawa, Z. Xia, A. Nagamatsu, M. Arai, T. Yamada, K. Kitamura, C. Masuta, K. Harada, J. Abe, The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1, Plant Physiol. 153 (2010) 198-210.

[16]

Z. Tian, X. Wang, R. Lee, Y. Li, J.E. Specht, R.L. Nelson, P.E. McClean, L. Qiu, J. Ma, Artificial selection for determinate growth habit in soybean, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 8563-8568.

[17]

I. Kardailsky, V.K. Shukla, J.H. Ahn, N. Dagenais, S.K. Christensen, J.T. Nguyen, J. Chory, M.J. Harrison, D. Weigel, Activation tagging of the floral inducer FT, Science 286 (1999) 1962-1965.

[18]

Y. Kobayashi, H. Kaya, K. Goto, M. Iwabuchi, T. Araki, A pair of related genes with antagonistic roles in mediating flowering signals, Science 286 (1999) 1960-1962.

[19]

S.L. Repinski, M. Kwak, P. Gepts, The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1, Theor. Appl. Genet. 124 (2012) 1539-1547.

[20]

Z. Si, H. Liu, J. Zhu, J. Chen, Q. Wang, L. Fang, F. Gao, Y. Tian, Y. Chen, L. Chang, B. Liu, Z. Han, B. Zhou, Y. Hu, X. Huang, T. Zhang, Mutation of SELF-PRUNING homologs in cotton promotes short-branching plant architecture, J. Exp. Bot. 69 (2018) 2543-2553.

[21]

L. Yue, X. Li, C. Fang, L. Chen, H. Yang, J. Yang, Z. Chen, H. Nan, L. Chen, Y. Zhang, H. Li, X. Hou, Z. Dong, J.L. Weller, J. Abe, B. Liu, F. Kong, FT5a interferes with the Dt1-AP1 feedback loop to control flowering time and shoot determinacy in soybean, J. Integr. Plant Biol. 63 (2021) 1004-1020.

[22]

J. Schmutz, S.B. Cannon, J. Schlueter, J. Ma, T. Mitros, W. Nelson, D.L. Hyten, Q. Song, J.J. Thelen, J. Cheng, D. Xu, U. Hellsten, G.D. May, Y. Yu, T. Sakurai, T. Umezawa, M.K. Bhattacharyya, D. Sandhu, B. Valliyodan, E. Lindquist, M. Peto, D. Grant, S. Shu, D. Goodstein, K. Barry, M. Futrell-Griggs, B. Abernathy, J. Du, Z. Tian, L. Zhu, N. Gill, T. Joshi, M. Libault, A. Sethuraman, X.C. Zhang, K. Shinozaki, H.T. Nguyen, R.A. Wing, P. Cregan, J. Specht, J. Grimwood, D. Rokhsar, G. Stacey, R.C. Shoemaker, S.A. Jackson, Genome sequence of the palaeopolyploid soybean, Nature 463 (2010) 178-183.

[23]
W. Fehr, C. Caviness, Stages of Soybean Development, Special Report, Iowa State University of Science and Technology, Ames, IA, USA, 1977.
[24]

X. Ma, Q. Zhang, Q. Zhu, W. Liu, Y. Chen, R. Qiu, B. Wang, Z. Yang, H. Li, Y. Lin, Y. Xie, R. Shen, S. Chen, Z. Wang, Y. Chen, J. Guo, L. Chen, X. Zhao, Z. Dong, Y.G. Liu, A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants, Mol. Plant 8 (2015) 1274-1284.

[25]

T. Flores, O. Karpova, X. Su, P. Zeng, K. Bilyeu, D. Sleper, H. Nguyen, Z. Zhang, Silencing of GmFAD3 gene by siRNA leads to low α-linolenic acids (18:3) of fad3-mutant phenotype in soybean[Glycine max (Merr.)], Transgenic Res. 17 (2008) 839-850.

[26]

D. Kim, B. Langmead, S. Salzberg, HISAT:a fast spliced aligner with low memory requirements, Nat. Methods 12 (2015) 357-360.

[27]

M. Pertea, G.M. Pertea, C.M. Antonescu, T.C. Chang, J.T. Mendell, S.L. Salzberg, StringTie enables improved reconstruction of a transcriptome from RNA-seq reads, Nat. Biotechnol. 33 (2015) 290-295.

[28]

R.C. Shoemaker, J. Schlueter, J.J. Doyle, Paleopolyploidyand gene duplication in soybean and other legumes, Curr. Opin. Plant Biol. 9 (2006) 104-109.

[29]

P.A. Wigge, M.C. Kim, K.E. Jaeger, W. Busch, M. Schmid, J.U. Lohmann, D. Weigel, Integration of spatial and temporal information during floral induction in Arabidopsis, Science 309 (2005) 1056-1059.

[30]

S. Hanano, K. Goto, Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression, Plant Cell 23 (2011) 3172-3184.

[31]

F. Foucher, J. Morin, J. Courtiade, S. Cadioux, N. Ellis, M.J. Banfield, C. Rameau, DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea, Plant Cell 15 (2003) 2742-2754.

[32]

X. Guo, Z. Zhao, J. Chen, X. Hu, D.A. Luo, A putative CENTRORADIALIS/TERMINAL FLOWER 1-like gene, Ljcen1, plays a role in phase transition in Lotus japonicus, J. Plant Physiol. 163 (2006) 436-444.

[33]

L.E. Flagel, J.F. Wendel, Gene duplication and evolutionary novelty in plants, New Phytol. 183 (2009) 557-564.

[34]

A. Hughes, The evolution of functionally novel proteins after gene duplication, Proc. Biol. Sci. 256 (1994) 119-124.

[35]

A. Force, M. Lynch, F. Pickett, A. Amores, Y. Yan, J. Postlethwait, Preservation of duplicate genes by complementary, degenerative mutations, Genetics 151 (1999) 1531-1545.

[36]

H. Innan, F. Kondrashov, The evolution of gene duplications:classifying and distinguishing between models, Nat. Rev. Genet. 11 (2010) 97-108.

[37]

Z. Wang, Z. Zhou, Y. Liu, T. Liu, Q. Li, Y. Ji, C. Li, C. Fang, M. Wang, M. Wu, Y. Shen, T. Tang, J. Ma, Z. Tian, Functional evolution of phosphatidylethanolamine binding proteins in soybean and Arabidopsis, Plant Cell 27 (2015) 323-336.

[38]

B. Samanfar, S.J. Molnar, M. Charette, A. Schoenrock, F. Dehne, A. Golshani, F. Belzile, E.R. Cober, Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean, Theor. Appl. Genet. 130 (2017) 377-390.

[39]

S. Watanabe, R. Hideshima, Z. Xia, Y. Tsubokura, S. Sato, Y. Nakamoto, N. Yamanaka, R. Takahashi, M. Ishimoto, T. Anai, S. Tabata, K. Harada, Map-based cloning of the gene associated with the soybean maturity locus E3, Genetics 182 (2009) 1251-1262.

[40]

S. Watanabe, Z. Xia, R. Hideshima, Y. Tsubokura, S. Sato, N. Yamanaka, R. Takahashi, T. Anai, S. Tabata, K. Kitamura, K. Harada, Map-based cloning of the gene associated with the soybean maturity locus E3, Genetics 182 (2009) 1251-1262.

[41]

T. Bu, S. Lu, K. Wang, L. Dong, S. Li, Q. Xie, X. Xu, Q. Cheng, L. Chen, C. Fang, H. Li, B. Liu, J. Weller, F. Kong, A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation, Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2010241118.

[42]

Z. Xia, S. Watanabe, T. Yamada, Y. Tsubokura, H. Nakashima, H. Zhai, T. Anai, S. Sato, T. Yamazaki, S. Lü, H. Wu, S. Tabata, K. Harada, Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) E2155-E2164.

[43]

A.G. Kantolic, G.A. Slafer, Photoperiod sensitivity after flowering and seed number determination in indeterminate soybean cultivars, Field Crops Res. 72 (2001) 109-118.

[44]

A.G. Kantolic, G.A. Slafer, Reproductive development and yield components in indeterminate soybean as affected by post-flowering photoperiod, Field Crops Res. 93 (2005) 212-222.

[45]

A.G. Kantolic, G.A. Slafer, Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering, Ann. Bot. 99 (2007) 925-933.

The Crop Journal
Pages 704-712
Cite this article:
Wang L, Lin C, Li B, et al. Two soybean homologues of TERMINAL FLOWER 1 control flowering time under long day conditions. The Crop Journal, 2023, 11(3): 704-712. https://doi.org/10.1016/j.cj.2023.01.008

314

Views

32

Downloads

6

Crossref

5

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 30 November 2022
Revised: 11 January 2023
Accepted: 13 February 2023
Published: 24 February 2023
© 2022 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return