AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Development of sorghum mutants with improved in vitro protein digestibility by CRISPR/Cas9 editing of kafirin genes

Lev A. Elkonina( )Grigoriy A. GerashchenkovbNatalie V. BorisenkoaOdyssey A. KenzhegulovaSaule Kh. SarsenovaaNatalya A. RozhnovabValery M. Panina
Federal Centre of Agriculture Research of South-East Region, Saratov 410010, Russia
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
Show Author Information

Abstract

Sorghum (Sorghum bicolor (L.) Moench) is a major world crop that is a reliable source of fodder and food grain in arid regions. However, unlike other cereals, sorghum grain has low nutritional value, owing mainly to the resistance of its storage proteins (kafirins) to protease digestion. Changing the composition of kafirins or their primary structure may address this problem. To induce mutations in kafirin-encoding genes that were expected to disturb their accumulation in endosperm cells, we used a genome-editing approach. By Agrobacterium-mediated genetic transformation of immature embryos of cv. Avans, we obtained 14 transgenic plants with genetic constructs for site-directed mutagenesis of the k1C5 and gKAF1 genes encoding 22 kDa α- and 28 kDa γ-kafirins, respectively. Sequencing of 5 regenerants obtained by using k1C5-addressing vector revealed two plants with mutations. T1 progeny of these mutants had higher in vitro digestibility of endosperm proteins (86%–92%), in comparison with the donor Avans (63%–67%). The kernels of these plants had a thick vitreous endosperm. A mutant with increased in vitro protein digestibility and vitreous endosperm, carrying a mutation in the target sequence, was also obtained by use of the gKAF1-addressing vector. Thus, using genome editing technology, we have obtained mutants with improved kafirin digestibility that can be used in sorghum breeding.

References

[1]

Z. Xin, M. Wang, H.E. Cuevas, J. Chen, M. Harrison, N.A. Pugh, G. Morris, Sorghum genetic, genomic, and breeding resources, Planta 254 (2021) 114.

[2]

I. Proietti, C. Frazzoli, A. Mantovani, Exploiting nutritional value of staple foods in the world’s semi-arid areas: risks, benefits, challenges and opportunities of sorghum, Healthcare 3 (2015) 172–193.

[3]

A.L. Girard, J.M. Awika, Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients, J. Cereal Sci. 84 (2018) 112–124.

[4]

T.F. Teferra, J.M. Awika, Sorghum as a healthy global food security crop: opportunities and challenges, Cereal Foods World 64 (2019) 5.

[5]

H.I. Mohamed, E.M. Fawzi, A. Basit, R. Kaleemullah, M.R.S. Lone, Sorghum: nutritional factors, bioactive compounds, pharmaceutical and application in food systems: a review, Phyton 91 (2022) 1303–1325.

[6]

S.V. Bykova, A.I. Parfenov, E.A. Sabel’nikova, Global epidemiology of celiac disease, Almanac Clin. Med. 46 (2018) 23–31.

[7]

J.H. Wong, T. Lau, N. Cai, J. Singh, J.F. Pedersen, W.H. Vensel, W.J. Hurkman, J.D. Wilson, P.G. Lemaux, B.B. Buchanan, Digestibility of protein and starch from sorghum (Sorghum bicolor) is linked to biochemical and structural features of grain endosperm, J. Cereal Sci. 49 (2009) 73–82.

[8]

L.A. Elkonin, J.V. Italianskaya, I.Y. Fadeeva, V.V. Bychkova, V.V. Kozhemyakin, In vitro protein digestibility in grain sorghum: effect of genotype and interaction with starch digestibility, Euphytica 193 (2013) 327–337.

[9]

D. Duressa, D. Weerasoriya, S.R. Bean, M. Tilley, T. Tesso, Genetic basis of protein digestibility in grain sorghum, Crop Sci. 58 (2018) 2183–2199.

[10]

G. Zhang, B.R. Hamaker, Low α-amylase starch digestibility of cooked sorghum flours and the effect of protein, Cereal Chem. 75 (1998) 710–713.

[11]

L.I. Ezeogu, K.G. Duodu, J.R.N. Taylor, Effects of endosperm texture and cooking conditions on the in vitro starch digestibility of sorghum and maize flours, J. Cereal Sci. 42 (2005) 33–44.

[12]

K.G. Duodu, J.R.N. Taylor, P.S. Belton, B.R. Hamaker, Factors affecting sorghum protein digestibility, J. Cereal Sci. 38 (2003) 117–131.

[13]

P.S. Belton, I. Delgadillo, N.G. Halford, P.R. Shewry, Kafirin structure and functionality, J. Cereal Sci. 44 (2006) 272–286.

[14]
D.P. Mohan, Chemically induced high lysine mutants in Sorghum bicolor (L.) Moench, Purdue University, West Lafayette, IN, USA, 1975, Ph.D. dissertation, Purdue University, West Lafayette, IN, USA.
[15]

D. Duressa, S. Bean, P.S. Amand, T. Tesso, Identification of variant α-kafirin alleles associated with protein digestibility in grain sorghum, Crop Sci. 60 (2020) 2467–2478.

[16]

L.S. da Silva, J. Taylor, J.R. Taylor, Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization, and protein digestion, J. Agric. Food Chem. 59 (2011) 9265–9270.

[17]

T. Kumar, I. Dweikat, S. Sato, Z. Ge, N. Nersesian, H. Chen, T. Elthon, S. Bean, B.P. Ioerger, M. Tilley, T. Clemente, Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench), Plant Biotechnol. J. 10 (2012) 533–544.

[18]

A.W. Grootboom, N.L. Mkhonza, Z. Mbambo, M.M. O’Kennedy, L.S. da Silva, J. Taylor, J.R.N. Taylor, R. Chikwamba, L. Mehlo, Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum, Plant Cell Rep. 33 (2014) 521–537.

[19]

L.A. Elkonin, J.V. Italianskaya, I.V. Domanina, N.Y. Selivanov, A.L. Rakitin, N.V. Ravin, Transgenic sorghum with improved digestibility of storage proteins obtained by Agrobacterium-mediated transformation, Russ. J. Plant Physiol. 63 (2016) 678–689.

[20]

G. Liu, E.K. Gilding, E.D. Kerr, B.L. Schulz, B. Tabet, B.R. Hamaker, I.D. Godwin, Increasing protein content and digestibility in sorghum grain with a synthetic biology approach, J. Cereal Sci. 85 (2019) 27–34.

[21]

H. Zhu, C. Li, C. Gao, Applications of CRISPR-Cas in agriculture and plant biotechnology, Nat. Rev. Mol. Cell Biol. 21 (2020) 661–677.

[22]

L. Bortesi, R. Fischer, The CRISPR/Cas9 system for plant genome editing and beyond, Biotechnol. Adv. 33 (2015) 41–52.

[23]

G. Song, M. Jia, K. Chen, X. Kong, B. Khattak, C. Xie, A. Li, L. Mao, CRISPR/Cas9: a powerful tool for crop genome editing, Crop J. 4 (2016) 75–82.

[24]

Y. Zhang, K. Massel, I.D. Godwin, C. Gao, Applications and potential of genome editing in crop improvement, Genome Biol. 19 (2018) 210.

[25]

G.A. Gerashchenkov, N.A. Rozhnova, B.R. Kuluev, O.Yu. Kiryanova, G.R. Gumerova, A.V. Knyazev, Z.R. Vershinina, E.V. Mikhailova, D.A. Chemeris, R.T. Matniyazov, An.Kh. Baimiev, I.M. Gubaidullin, Al.Kh. Baimiev, A.V. Chemeris, Design of guide RNA for CRISPR/Cas plant genome editing. Mol. Biol. 54 (2020) 24–42.

[26]

A. Li, S. Jia, A. Yobi, Z. Ge, S.J. Sato, C. Zhang, R. Angelovici, T.E. Clemente, D.R. Holding, Editing of an alpha-kafirin gene family increases digestibility and protein quality in sorghum, Plant Physiol. 177 (2018) 1425–1438.

[27]

K. Massel, J. Hintzsche, J. Restall, E.D. Kerr, B.L. Schulz, I.D. Godwin, CRISPR-knockout of β-kafirin in sorghum does not recapitulate the grain quality of natural mutants, Planta 257 (2023) 8.

[28]

K. Massel, Y. Lam, J. Hintzsche, N. Lester, J.R. Botella, I.D. Godwin, Endogenous U6 promoters improve CRISPR/Cas9 editing efficiencies in Sorghum bicolor and show potential for applications in other cereals, Plant Cell Rep. 41 (2022) 489–492.

[29]

G. Gerashchenkov, L. Elkonin, K. Gerashchenkov, N. Rozhnova, S. Hiekel, J. Kumlehn, A.V. Chemeris, Binary vector construction for site-directed mutagenesis of kafirin genes in sorghum, Am. J. Plant Sci. 12 (2021) 1276–1287.

[30]

A. Howe, S. Sato, I. Dweikat, M. Fromm, T. Clemente, Rapid and reproducible Agrobacterium-mediated transformation of sorghum, Plant Cell Rep. 25 (2006) 784–791.

[31]

L.A. Elkonin, N.V. Pakhomova, Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum, Plant Cell Tiss. Organ Cult. 61 (2000) 115–123.

[32]
S.B. Gelvin, in: K. Wang (Ed.), Agrobacterium Protocols, Methods in Molecular Biology, 343, Humana Press, Totowa, NJ, USA, 2006, pp. 77–84
[33]

A. Aboubacar, J.D. Axtell, C.P. Huang, B.R. Hamaker, A rapid protein digestibility assay for identifying highly digestible sorghum lines, Cereal Chem. 78 (2001) 160–165.

[34]

A. Nunes, I. Correia, A. Barros, I. Delgadillo, Sequential in vitro pepsin digestion of uncooked and cooked sorghum and maize samples, J. Agric. Food Chem. 52 (2004) 2052–2058.

[35]

U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680–685.

[36]
L.A. Elkonin, V.M. Panin, O.A. Kenzhegulov, S.Kh. Sarsenova, RNAi-mutants of Sorghum bicolor (L.) Moench with improved digestibility of seed storage proteins, in: J.C. Jimenez-Lopez (Ed.), Grain and Seed Proteins Functionality, Intech Open Ltd, London, UK, 2021.
[37]

R.I. Ahmed, A. Ding, M. Xie, Y. Kong, Progress in optimization of Agrobacterium-mediated transformation in sorghum (Sorghum bicolor), Int. J. Mol. Sci. 19 (2018) 2983.

[38]

X. Qi, H. Wu, H. Jiang, J. Zhu, C. Huang, X. Zhang, C. Liu, B. Cheng, Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity, Crop J. 8 (2020) 440–448.

[39]

S. Wang, Y. Yang, M. Guo, C. Zhong, C. Yan, S. Sun, Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system, Crop J. 8 (2020) 457–454.

[40]

M. Kang, K. Lee, T. Finley, H. Chappell, V. Veena, K. Wang, An improved Agrobacterium-mediated transformation and genome-editing method for maize inbred B104 using a ternary vector system and immature embryos, Front. Plant Sci. 13 (2022).

[41]

C.A. Weaver, B.R. Hamaker, J.D. Axtell, Discovery of grain sorghum germ plasm with high uncooked and cooked in vitro protein digestibility, Cereal Chem. 75 (1998) 665–670.

[42]

K. Sandhu, F. Manthey, E. Elias, High relative humidity affects vitreousness of durum wheat [Triticum turgidum L. var. durum (Desf)], Cereal Res. Commun. 37 (2009) 269–275.

[43]

G. Branković, D. Dodig, M. Zorić, D. Knežević, G. Šurlan-Momirović, V. Dragičević, N. Đurić, Effects of climatic factors on grain vitreousness stability and heritability in durum wheat, Turk. J. Agric. For. 38 (2014) 429–440.

The Crop Journal
Pages 1411-1418
Cite this article:
Elkonin LA, Gerashchenkov GA, Borisenko NV, et al. Development of sorghum mutants with improved in vitro protein digestibility by CRISPR/Cas9 editing of kafirin genes. The Crop Journal, 2023, 11(5): 1411-1418. https://doi.org/10.1016/j.cj.2023.02.005

194

Views

3

Downloads

13

Crossref

10

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 16 October 2022
Revised: 07 February 2023
Accepted: 14 February 2023
Published: 01 March 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return