AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Development of plant cytosine base editors with the Cas12a system

Huanhuan Wanga,1Jing Lianga,1Like ChenaBufang DengaDongfang GubXiaoshuang LiuaShan JinbRongfang XubRuiying QinbYitong ZhuaLiangxia ZhaoaDourong KoubYanjun ChenaYingli JiangaJuan Lib( )Pengcheng Weia( )
College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Base editors of the Cas9 system have been widely used for precise nucleotide substitution in crops. In this study, Cas12a was applied to construct plant cytosine base editors (CBEs). The main elements of Cas12a-CBEs were engineered and their efficiency was evaluated in stably transformed rice cells. An optimized ttCas12a-hyA3Bctd editor, consisting of a LbCas12a variant carrying catalytic inactive D832A and temperature-tolerance D156R double mutations, a truncated human APOBEC3B deaminase, a human RAD51 single-stranded DNA-binding domain, and double copies of UGI, outperformed other Cas12a-CBEs in base editing efficiency. In T0 transgenic rice plants, ttCas12a-hyA3Bctd edited an average of 42.01% and a maximum of 68.75% of lines at six genomic targets. A-to-G conversions were generated in rice by an adenine base editor with a similar architecture to the optimized CBE. Our results provide preliminary evidence for the feasibility of robust and efficient plant Cas12a base editing systems, which could be useful for precise crop breeding.

References

[1]

C. Gao, Genome engineering for crop improvement and future agriculture, Cell 184 (2021) 1621–1635.

[2]

H. Zhu, C. Li, C. Gao, Applications of CRISPR-Cas in agriculture and plant biotechnology, Nat. Rev. Mol. Cell Biol. 21 (2020) 661–677.

[3]

A.V. Anzalone, L.W. Koblan, D.R. Liu, Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors, Nat. Biotechnol. 38 (2020) 824–844.

[4]

G. Liu, Q. Lin, S. Jin, C. Gao, The CRISPR-Cas toolbox and gene editing technologies, Mol. Cell 82 (2022) 333–347.

[5]

K.A. Molla, S. Sretenovic, K.C. Bansal, Y. Qi, Precise plant genome editing using base editors and prime editors, Nat. Plants 7 (2021) 1166–1187.

[6]

S. Sretenovic, S. Liu, G. Li, Y. Cheng, T. Fan, Y. Xu, J. Zhou, X. Zheng, G. Coleman, Y. Zhang, Y. Qi, Exploring C-To-G base editing in rice, tomato, and poplar, Front. Genome Ed. 3 (2021) 756–766.

[7]

Y. Tian, R. Shen, Z. Li, Q.I. Yao, X. Zhang, D. Zhong, X. Tan, M. Song, H. Han, J.K. Zhu, Y. Lu, Efficient C-to-G editing in rice using an optimized base editor, Plant Biotechnol. J. 20 (2022) 1238–1240.

[8]

D. Zeng, Z. Zheng, Y. Liu, T. Liu, T. Li, J. Liu, Q. Luo, Y. Xue, S. Li, N. Chai, S. Yu, X. Xie, Y.G. Liu, Q. Zhu, Exploring C-to-G and A-to-Y base editing in rice by using new vector tools, Int. J. Mol. Sci. 23 (2022) 7990.

[9]

B. Zetsche, J.S. Gootenberg, O.O. Abudayyeh, I.M. Slaymaker, K.S. Makarova, P. Essletzbichler, S.E. Volz, J. Joung, J. Van Der Oost, A. Regev, E.V. Koonin, F. Zhang, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell 163 (2015) 759–771.

[10]

S. Li, J. Li, Y. He, M. Xu, J. Zhang, W. Du, Y. Zhao, L. Xia, Precise gene replacement in rice by RNA transcript-templated homologous recombination, Nat. Biotechnol. 37 (2019) 445–450.

[11]

S. Chen, Y. Jia, Z. Liu, H. Shan, M. Chen, H. Yu, L. Lai, Z. Li, Robustly improved base editing efficiency of Cpf1 base editor using optimized cytidine deaminases, Cell Discov. 6 (2020) 62.

[12]

B.P. Kleinstiver, A.A. Sousa, R.T. Walton, Y.E. Tak, J.Y. Hsu, K. Clement, M.M. Welch, J.E. Horng, J. Malagon-Lopez, I. Scarfò, M.V. Maus, L. Pinello, M.J. Aryee, J.K. Joung, Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing, Nat. Biotechnol. 37 (2019) 276–282.

[13]

X. Li, Y. Wang, Y. Liu, B. Yang, X. Wang, J. Wei, Z. Lu, Y. Zhang, J. Wu, X. Huang, L.I. Yang, J. Chen, Base editing with a Cpf1-cytidine deaminase fusion, Nat. Biotechnol. 36 (2018) 324–327.

[14]

X. Wang, C. Ding, W. Yu, Y. Wang, S. He, B. Yang, Y.C. Xiong, J. Wei, J. Li, J. Liang, Z. Lu, W. Zhu, J. Wu, Z. Zhou, X. Huang, Z. Liu, L. Yang, J. Chen, Cas12a base editors induce efficient and specific editing with low DNA damage response, Cell Rep. 31 (2020) 107723.

[15]

G. Wang, Z. Xu, F. Wang, Y. Huang, Y. Xin, S. Liang, B. Li, H. Si, L. Sun, Q. Wang, X. Ding, X. Zhu, L. Chen, L. Yu, K. Lindsey, X. Zhang, S. Jin, Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum), BMC Biol. 20 (2022) 45.

[16]

J. Wang, F. Yan, L. Liu, X. Zhou, D. Wang, H. Zhou, Optimization of CRISPR/Cas12a system and development of it-mediated adenine base editor in rice, Biotechnol. Bull. 37 (2021) 279–285.

[17]

R. Xu, R. Qin, H. Li, J. Li, J. Yang, P. Wei, Enhanced genome editing in rice using single transcript unit CRISPR-LbCpf1 systems, Plant Biotechnol. J. 17 (2019) 553–555.

[18]

R. Qin, S. Liao, J. Li, H. Li, X. Liu, J. Yang, P. Wei, Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice, Crop J. 8 (2020) 396–402.

[19]

J. Li, R. Xu, R. Qin, X. Liu, F. Kong, P. Wei, Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants, Mol. Plant 14 (2021) 352–360.

[20]

R. Xu, R. Qin, H. Xie, J. Li, X. Liu, M. Zhu, Y. Sun, Y. Yu, P. Lu, P. Wei, Genome editing with type Ⅱ-C CRISPR-Cas9 systems from Neisseria meningitidis in rice, Plant Biotechnol. J. 20 (2022) 350–359.

[21]

M.F. Maher, R.A. Nasti, M. Vollbrecht, C.G. Starker, M.D. Clark, D.F. Voytas, Plant gene editing through de novo induction of meristems, Nat. Biotechnol. 38 (2020) 84–89.

[22]

R. Xu, H. Li, R. Qin, L. Wang, L. Li, P. Wei, J. Yang, Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice, Rice 7 (2014) 5.

[23]
D. Weigel, J. Glazebrook, Transformation of agrobacterium using the freeze-thaw method, CSH Protoc. 2006 (2006) pdb.prot4666.
[24]

L. Hu, H. Li, R. Qin, R. Xu, J. Li, L. Li, P. Wei, J. Yang, Plant phosphomannose isomerase as a selectable marker for rice transformation, Sci. Rep. 6 (2016) 25921.

[25]
J.D. Clarke, Cetyltrimethyl Ammonium Bromide (CTAB) DNA miniprep for plant DNA isolation, CSH Protoc. 2009 (2009) pdb.prot5177.
[26]

Q. Liu, C. Wang, X. Jiao, H. Zhang, L. Song, Y. Li, C. Gao, K. Wang, Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems, Sci. China Life Sci. 62 (2019) 1–7.

[27]

F. Teng, J. Li, T. Cui, K. Xu, L. Guo, Q. Gao, G. Feng, C. Chen, D. Han, Q. Zhou, W. Li, Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds, Genome Biol. 20 (2019) 15.

[28]

X. Zhang, L. Chen, B. Zhu, L. Wang, C. Chen, M. Hong, Y. Huang, H. Li, H. Han, B. Cai, W. Yu, S. Yin, L. Yang, Z. Yang, M. Liu, Y. Zhang, Z. Mao, Y. Wu, M. Liu, D. Li, Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain, Nat. Cell Biol. 22 (2020) 740–750.

[29]

J. Tan, D. Zeng, Y. Zhao, Y. Wang, T. Liu, S. Li, Y. Xue, Y. Luo, X. Xie, L. Chen, Y.G. Liu, Q. Zhu, PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants, Plant Biotechnol. J. 20 (2022) 934–943.

[30]

M. Wang, Z. Wang, Y. Mao, Y. Lu, R. Yang, X. Tao, J.K. Zhu, Optimizing base editors for improved efficiency and expanded editing scope in rice, Plant Biotechnol. J. 17 (2019) 1697–1699.

[31]

D. Zeng, T. Liu, J. Tan, Y. Zhang, Z. Zheng, B. Wang, D. Zhou, X. Xie, M. Guo, Y.G. Liu, PhieCBEs: plant high-efficiency cytidine base editors with expanded target range, Mol. Plant 13 (2020) 1666–1669.

[32]

Q. Ren, S. Sretenovic, G. Liu, Z. Zhong, J. Wang, L. Huang, X.U. Tang, Y. Guo, L.I. Liu, Y. Wu, J. Zhou, Y. Zhao, H. Yang, Y. He, S. Liu, D. Yin, R. Mayorga, X. Zheng, T. Zhang, Y. Qi, Y. Zhang, Improved plant cytosine base editors with high editing activity, purity, and specificity, Plant Biotechnol. J. 19 (2021) 2052–2068.

[33]

S. Jin, H. Fei, Z. Zhu, Y. Luo, J. Liu, S. Gao, F. Zhang, Y.H. Chen, Y. Wang, C. Gao, Rationally designed APOBEC3B cytosine base editors with improved specificity, Mol. Cell 79 (2020) 728-740.

[34]

P. Schindele, H. Puchta, Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing, Plant Biotechnol. J. 18 (2020) 1118–1120.

[35]

S. Bae, J. Park, J.S. Kim, Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases, Bioinformatics 30 (2014) 1473–1475.

[36]

L. Wang, W. Xue, L. Yan, X. Li, J. Wei, M. Chen, J. Wu, B. Yang, L.I. Yang, J. Chen, Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor, Cell Res. 27 (2017) 1289–1292.

[37]

J.M. Gehrke, O. Cervantes, M.K. Clement, Y. Wu, J. Zeng, D.E. Bauer, L. Pinello, J.K. Joung, An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities, Nat. Biotechnol. 36 (2018) 977–982.

[38]

X. Wang, J. Li, Y. Wang, B. Yang, J. Wei, J. Wu, R. Wang, X. Huang, J. Chen, L.I. Yang, Efficient base editing in methylated regions with a human APOBEC3ACas9 fusion, Nat. Biotechnol. 36 (2018) 946–949.

[39]

W.X. Yan, R. Mirzazadeh, S. Garnerone, D. Scott, M.W. Schneider, T. Kallas, J. Custodio, E. Wernersson, Y. Li, L. Gao, Y. Federova, B. Zetsche, F. Zhang, M. Bienko, N. Crosetto, BLISS is a versatile and quantitative method for genomewide profiling of DNA double-strand breaks, Nat. Commun. 8 (2017) 15058.

[40]

B.P. Kleinstiver, S.Q. Tsai, M.S. Prew, N.T. Nguyen, M.M. Welch, J.M. Lopez, Z.R. McCaw, M.J. Aryee, J.K. Joung, Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells, Nat. Biotechnol. 34 (2016) 869–874.

[41]

D. Kim, J. Kim, J.K. Hur, K.W. Been, S.H. Yoon, J.S. Kim, Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells, Nat. Biotechnol. 34 (2016) 863–868.

[42]

D. Kim, K. Lim, D.E. Kim, J.S. Kim, Genome-wide specificity of dCpf1 cytidine base editors, Nat. Commun. 11 (2020) 4072.

[43]

J.L. Doman, A. Raguram, G.A. Newby, D.R. Liu, Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors, Nat. Biotechnol. 38 (2020) 620–628.

[44]

E. Zuo, Y. Sun, W.U. Wei, T. Yuan, W. Ying, H. Sun, L. Yuan, L.M. Steinmetz, Y. Li, H. Yang, Cytosine base editor generates substantial off-target singlenucleotide variants in mouse embryos, Science 364 (2019) 289–292.

[45]

S. Jin, Y. Zong, Q. Gao, Z. Zhu, Y. Wang, P. Qin, C. Liang, D. Wang, J.L. Qiu, F. Zhang, C. Gao, Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice, Science 364 (2019) 292–295.

[46]

D.K. Lam, P.R. Feliciano, A. Arif, T. Bohnuud, T.P. Fernandez, J.M. Gehrke, P. Grayson, K.D. Lee, M.A. Ortega, C. Sawyer, N.D. Schwaegerle, L. Peraro, L. Young, S.J. Lee, G. Ciaramella, N.M. Gaudelli, Improved cytosine base editors generated from TadA variants, Nat. Biotechnol. (2023), https://doi.org/10.1038/s41587-022-01611-9.

[47]

L. Chen, B. Zhu, G. Ru, H. Meng, Y. Yan, M. Hong, D. Zhang, C. Luan, S. Zhang, H. Wu, H. Gao, S. Bai, C. Li, R. Ding, N. Xue, Z. Lei, Y. Chen, Y. Guan, S. Siwko, Y. Cheng, G. Song, L. Wang, C. Yi, M. Liu, D. Li, Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing, Nat. Biotechnol. 41 (2022) 663–672.

[48]

Y. Zhang, Q. Ren, X. Tang, S. Liu, A.A. Malzahn, J. Zhou, J. Wang, D. Yin, C. Pan, M. Yuan, L. Huang, H. Yang, Y. Zhao, Q. Fang, X. Zheng, L. Tian, Y. Cheng, Y. Le, B. McCoy, L. Franklin, J.D. Selengut, S.M. Mount, Q. Que, Y. Zhang, Y. Qi, Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems, Nat. Commun. 12 (2021) 1944.

[49]

C. Gaillochet, A. Peña Fernández, V. Goossens, K. D’Halluin, A. Drozdzecki, M. Shafie, J. van Duyse, G. van Isterdael, C. Gonzalez, M. Vermeersch, J. de Saeger, W. Develtere, D. Audenaert, D. de Vleesschauwer, F. Meulewaeter, T.B. Jacobs, Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform, Genome Biol. 24 (2023) 6.

The Crop Journal
Pages 1451-1457
Cite this article:
Wang H, Liang J, Chen L, et al. Development of plant cytosine base editors with the Cas12a system. The Crop Journal, 2023, 11(5): 1451-1457. https://doi.org/10.1016/j.cj.2023.03.002

263

Views

1

Downloads

3

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 03 November 2022
Revised: 09 February 2023
Accepted: 05 March 2023
Published: 27 March 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return