AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Genome-wide analysis of nuclear factor Y genes and functional investigation of watermelon ClNF-YB9 during seed development

Qin Fenga,1Ling Xiaoa,1Jiafa Wanga,1Jie WangaChenyang ChenaJianyang SunaXixi WuaMan LiuaXian ZhangaShujuan Tiana,b( )Li Yuana,b( )
State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, Guangdong, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

The nuclear factor Y (NF-Y) gene family is a class of transcription factors that are widely distributed in eukaryotes and are involved in various biological processes. However, the NF-Y gene family members in watermelon, a valued and nutritious fruit, remain largely unknown and their functions have not been characterized. In the present study, 22 ClNF-Y genes in watermelon, 29 CsNF-Y genes in cucumber, and 24 CmNF-Y genes in melon were identified based on the whole-genome investigation and their protein properties, gene location, gene structure, motif composition, conserved domain, and evolutionary relationship were investigated. ClNF-YB9 from watermelon and its homologs in cucumber and melon were expressed specifically in seeds. Its expression remained low in the early stages of watermelon seed development, increased at 20 days after pollination (DAP), and peaked at 45–50 DAP. Moreover, the knockout mutant Clnf-yb9 exhibited abnormal leafy cotyledon phenotype, implying its critical role during seed formation. Finally, protein interaction assays showed that ClNF-YB9 interacts with all ClNF-YCs and the ClNF-YB9-YC4 heterodimer was able to recruit a ClNF-YA7 subunit to assemble a complete NF-Y complex, which may function in seed development. This study revealed the structure and evolutionary relationships of the NF-Y gene family in Cucurbitaceae and the novel function of ClNF-YB9 in regulating seed development in watermelon.

References

[1]

R. Mantovani, The molecular biology of the CCAAT-binding factor NF-Y, Gene 239 (1999) 15–27.

[2]

Y. Xing, J.D. Fikes, L. Guarente, Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain, EMBO J. 12 (1993) 4647–4655.

[3]

R. Mantovani, X.Y. Li, U. Pessara, R. Hooft van Huisjduijnen, C. Benoist, D. Mathis, Dominant negative analogs of NF-YA, J. Biol. Chem. 269 (1994) 20340–20346.

[4]

D. Dolfini, R. Gatta, R. Mantovani, NF-Y and the transcriptional activation of CCAAT promoters, Crit. Rev. Biochem. Mol. Biol. 47 (2012) 29–49.

[5]

T. Laloum, S. de Mita, P. Gamas, M. Baudin, A. Niebel, CCAAT-box binding transcription factors in plants: Y so many?, Trends Plant Sci 18 (2013) 157–166.

[6]

D. Hackenberg, Y. Wu, A. Voigt, R. Adams, P. Schramm, B. Grimm, Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor NF-Y, Mol. Plant 5 (2012) 876–888.

[7]

N. Siefers, K.K. Dang, R.W. Kumimoto, W.E.T. Bynum, G. Tayrose, B.F. Holt 3rd, Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity, Plant Physiol. 149 (2009) 625–641.

[8]

W.X. Li, Y. Oono, J. Zhu, X.J. He, J.M. Wu, K. Iida, X.Y. Lu, X. Cui, H. Jin, J.K. Zhu, The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance, Plant Cell 20 (2008) 2238–2251.

[9]

X.J. Ma, T.F. Yu, X.H. Li, X.Y. Cao, J. Ma, J. Chen, Y.B. Zhou, M. Chen, Y.Z. Ma, J.H. Zhang, Z.S. Xu, Overexpression of GmNFYA5 confers drought tolerance to transgenic Arabidopsis and soybean plants, BMC Plant Biol. 20 (2020) 123.

[10]

X. Ma, X. Zhu, C. Li, Y. Song, W. Zhang, G. Xia, M. Wang, Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana, Plant Physiol. Biochem. 86 (2015) 34–43.

[11]

Y. Zhou, Y. Zhang, X. Wang, X. Han, Y. An, S. Lin, C. Shen, J. Wen, C. Liu, W. Yin, X. Xia, Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus, New Phytol. 227 (2020) 407–426.

[12]

B. Wang, Z. Li, Q. Ran, P. Li, Z. Peng, J. Zhang, ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants, Front. Plant. Sci. 9 (2018) 709.

[13]

H. Sato, J. Mizoi, H. Tanaka, K. Maruyama, F. Qin, Y. Osakabe, K. Morimoto, T. Ohori, K. Kusakabe, M. Nagata, K. Shinozaki, K. Yamaguchi-Shinozaki, Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stressinduced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits, Plant Cell 26 (2014) 4954–4973.

[14]

H. Shi, T. Ye, B. Zhong, X. Liu, R. Jin, Z. Chan, AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21, New Phytol. 203 (2014) 554–567.

[15]

T.F. Yu, Y. Liu, J.D. Fu, J. Ma, Z.W. Fang, J. Chen, L. Zheng, Z.W. Lu, Y.B. Zhou, M. Chen, Z.S. Xu, Y.Z. Ma, The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance, Plant Biotechnol. J. 19 (2021) 2589–2605.

[16]

T. Lotan, M. Ohto, K.M. Yee, M.A. West, R. Lo, R.W. Kwong, K. Yamagishi, R.L. Fischer, R.B. Goldberg, J.J. Harada, Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells, Cell 93 (1998) 1195–1205.

[17]

J. Mu, H. Tan, S. Hong, Y. Liang, J. Zuo, Arabidopsis transcription factor genes NFYA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development, Mol. Plant 6 (2013) 188–201.

[18]

X. Liu, Y. Yang, Y. Hu, L. Zhou, Y. Li, X. Hou, Temporal-specific interaction of NFYC and CURLY LEAF during the floral transition regulates flowering, Plant Physiol. 177 (2018) 105–114.

[19]

C. Shen, H. Liu, Z. Guan, J. Yan, T. Zheng, W. Yan, C. Wu, Q. Zhang, P. Yin, Y. Xing, Structural insight into DNA recognition by CCT/NF-YB/YC complexes in plant photoperiodic flowering, Plant Cell 32 (2020) 3469–3484.

[20]

C. Zhang, Q. Qian, X. Huang, W. Zhang, X. Liu, X., Hou, NF-YCs modulate histone variant H2A.Z deposition to regulate photomorphogenic growth in Arabidopsis, J. Integr. Plant Biol. 63 (2021) 1120–1132.

[21]

W. Zhang, Y. Tang, Y. Hu, Y. Yang, J. Cai, H. Liu, C. Zhang, X. Liu, X. Hou, Arabidopsis NF-YCs play dual roles in repressing brassinosteroid biosynthesis and signaling during light-regulated hypocotyl elongation, Plant Cell 33 (2021) 2360–2374.

[22]

T. Feng, L. Wang, L. Li, Y. Liu, K. Chong, G. Theißen, Z. Meng, OsMADS14 and NFYB1 cooperate in the direct activation of OsAGPL2 and Waxy during starch synthesis in rice endosperm, New Phytol. 234 (2022) 77–92.

[23]

H. Lee, R.L. Fischer, R.B. Goldberg, J.J. Harada, Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 2152–2156.

[24]

M. Suzuki, H.H. Wang, D.R. McCarty, Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes, Plant Physiol. 143 (2007) 902–911.

[25]

J.C. Chen, C.G. Tong, H.Y. Lin, S.C. Fang, Phalaenopsis LEAFY COTYLEDON1-induced somatic embryonic structures are morphologically distinct from protocorm-like bodies, Front. Plant Sci. 10 (2019) 1594.

[26]

L. Jo, J.M. Pelletier, S.W. Hsu, R. Baden, R.B. Goldberg, J.J. Harada, Combinatorial interactions of the LEC1 transcription factor specify diverse developmental programs during soybean seed development, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 1223–1232.

[27]

M. West, K.M. Yee, J. Danao, J.L. Zimmerman, R.L. Fischer, R.B. Goldberg, J.J. Harada, LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis, Plant Cell 6 (1994) 1731–1745.

[28]

J. Mu, H. Tan, Q. Zheng, F. Fu, Y. Liang, J. Zhang, X. Yang, T. Wang, K. Chong, X.J. Wang, J. Zuo, LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis, Plant Physiol. 148 (2008) 1042–1054.

[29]

B. Niu, Z. Zhang, J. Zhang, Y. Zhou, C. Chen, The rice LEC1-like transcription factor OsNF-YB9 interacts with SPK, an endosperm-specific sucrose synthase protein kinase, and functions in seed development, Plant J. 106 (2021) 1233–1246.

[30]

Z. Tao, L. Shen, X. Gu, Y. Wang, H. Yu, Y. He, Embryonic epigenetic reprogramming by a pioneer transcription factor in plants, Nature 551 (2017) 124–128.

[31]

P. Wang, Y. Zheng, Y. Guo, X. Chen, Y. Sun, J. Yang, N. Ye, Identification, expression, and putative target gene analysis of nuclear factor-Y (NF-Y) transcription factors in tea plant (Camellia sinensis), Planta 250 (2019) 1671–1686.

[32]

Q. Wei, S. Wen, C. Lan, Y. Yu, G. Chen, Genome-wide identification and expression profile analysis of the NF-Y transcription factor gene family in petunia hybrida, Plants (Basel) 9 (2020) 336.

[33]

Y. Guo, S. Niu, Y.A. El-Kassaby, W. Li, Transcriptome-wide isolation and expression of NF-Y gene family in male cone development and hormonal treatment of Pinus tabuliformis, Physiol. Plant. 171 (2021) 34–47.

[34]

R. Liu, M. Wu, H.L. Liu, Y.M. Gao, J. Chen, H.W. Yan, Y. Xiang, Genome-wide identification and expression analysis of the NF-Y transcription factor family in Populus, Physiol. Plant. 171 (2021) 309–327.

[35]

H. Yan, C. Liu, J. Zhao, X. Ye, Q. Wu, T. Yao, L. Peng, L. Zou, G. Zhao, Genomewide analysis of the NF-Y gene family and their roles in relation to fruit development in Tartary buckwheat (Fagopyrum tataricum), Int. J. Biol. Macromol. 190 (2021) 487–498.

[36]

Y. An, X. Suo, Q. Niu, S. Yin, L. Chen, Genome-wide identification and analysis of the NF-Y transcription factor family reveal its potential roles in salt stress in Alfalfa (Medicago sativa L.), Int. J. Mol. Sci. 23 (2022) 6426.

[37]

Y. Zheng, S. Wu, Y. Bai, H. Sun, C. Jiao, S. Guo, K. Zhao, J. Blanca, Z. Zhang, S. Huang, Y. Xu, Y. Weng, M. Mazourek, K.R. U, K. Ando, J.D. McCreight, A.A. Schaffer, J. Burger, Y. Tadmor, N. Katzir, X. Tang, Y. Liu, J.J. Giovannoni, K.S. Ling, W.P. Wechter, A. Levi, J. Garcia-Mas, R. Grumet, Z. Fei, Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops, Nucleic Acids Res. 47 (2019) D1128–D1136.

[38]

E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R.D. Appel, A. Bairoch, ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res. 31 (2003) 3784–3788.

[39]

B. Hu, J. Jin, A.Y. Guo, H. Zhang, J. Luo, G. Gao, GSDS 2.0: an upgraded gene feature visualization server, Bioinformatics 31 (2015) 1296–1297.

[40]

T.L. Bailey, M. Boden, F.A. Buske, M. Frith, C.E. Grant, L. Clementi, J. Ren, W.W. Li, W.S. Noble, MEME SUITE: tools for motif discovery and searching, Nucleic Acids Res. 37 (2009) W202–W208.

[41]

C. Chen, H. Chen, Y. Zhang, H.R. Thomas, M.H. Frank, Y. He, R. Xia, TBtools: an integrative toolkit developed for interactive analyses of big biological data, Mol. Plant 13 (2020) 1194–1202.

[42]

S. Tian, J. Jiang, G.Q. Xu, T. Wang, Q. Liu, X. Chen, M. Liu, L. Yuan, Genome wide analysis of kinesin gene family in Citrullus lanatus reveals an essential role in early fruit development, BMC Plant Biol. 21 (2021) 210.

[43]

Q. Feng, L. Xiao, Y. He, M. Liu, J. Wang, S. Tian, X. Zhang, L. Yuan, Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene, J. Integr. Plant Biol. 63 (2021) 2038–2042.

[44]

J. Chang, Y. Guo, J. Yan, Z. Zhang, L. Yuan, C. Wei, Y. Zhang, J. Ma, J. Yang, X. Zhang, H. Li, The role of watermelon caffeic acid O-methyltransferase (ClCOMT1) in melatonin biosynthesis and abiotic stress tolerance, Hortic. Res. 8 (2021) 210.

[45]

J. Wang, G. Li, C. Li, C. Zhang, L. Cui, G. Ai, X. Wang, F. Zheng, D. Zhang, R.M. Larkin, Z. Ye, J. Zhang, NF-Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato, New Phytol. 229 (2021) 3237–3252.

[46]

J. Song, X. Xie, C. Chen, J. Shu, R.K. Thapa, V. Nguyen, S. Bian, S.E. Kohalmi, F. Marsolais, J. Zou, Y. Cui, LEAFY COTYLEDON1 expression in the endosperm enables embryo maturation in Arabidopsis, Nat. Commun. 12 (2021) 3963.

[47]

D. Hackenberg, U. Keetman, B. Grimm, Homologous NF-YC2 subunit from Arabidopsis and tobacco is activated by photooxidative stress and induces flowering, Int. J. Mol. Sci. 13 (2012) 3458–3477.

[48]

Z. Liang, L. Yuan, X. Xiong, Y. Hao, X. Song, T. Zhu, Y. Yu, W. Fu, Y. Lei, J. Xu, J. Liu, J.F. Li, C. Li, The transcriptional repressors VAL1 and VAL2 mediate genome-wide recruitment of the CHD3 chromatin remodeler PICKLE in Arabidopsis, Plant Cell 34 (2022) 3915–3935.

[49]

G. Xu, Z. Tao, Y. He, Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation, Plant Cell 34 (2022) 2205–2221.

[50]

D.W. Meinke, L.H. Franzmann, T.C. Nickle, E.C. Yeung, Leafy cotyledon mutants of Arabidopsis, Plant Cell 6 (1994) 1049–1064.

[51]

D. Albani, L.S. Robert, Cloning and characterization of a Brassica napus gene encoding a homologue of the B subunit of a heteromeric CCAAT-binding factor, Gene 167 (1995) 209–213.

[52]

N. Malviya, P. Jaiswal, D. Yadav, Genome-wide characterization of Nuclear Factor Y (NF-Y) gene family of sorghum [Sorghum bicolor (L.) Moench]: a bioinformatics approach, Physiol. Mol. Biol. Plants 22 (2016) 33–49.

[53]

C. Ren, Z. Zhang, Y. Wang, S. Li, Z. Liang, Genome-wide identification and characterization of the NF-Y gene family in grape (Vitis vinifera L.), BMC Genomics 17 (2016) 605.

[54]

M. Li, G. Li, W. Liu, X. Dong, A. Zhang, Genome-wide analysis of the NF-Y gene family in peach (Prunus persica L.), BMC Genomics 20 (2019) 612.

[55]

Y. Qu, Y. Wang, J. Zhu, Y. Zhang, H. Hou, Genomic organization, phylogenetic comparison, and differential expression of the nuclear factor-Y gene family in apple (Malus domestica), Plants (Basel). 10 (2020) 16.

[56]

J. Yang, J. Zhu, Y. Yang, Genome-wide identification and expression analysis of NF-Y transcription factor families in watermelon (Citrullus lanatus), J. Plant Growth Regul. 36 (2017) 590–607.

[57]

Y. Xing, S. Zhang, J.T. Olesen, A. Rich, L. Guarente, Subunit interaction in the CCAAT-binding heteromeric complex is mediated by a very short alpha-helix in HAP2, Proc. Natl. Acad. Sci. U. S. A. 91 (1994) 3009–3013.

[58]

M. Fornari, V. Calvenzani, S. Masiero, C. Tonelli, K. Petroni, The Arabidopsis NFYA3 and NF-YA8 genes are functionally redundant and are required in early embryogenesis, PLoS ONE 8 (2013) e82043.

[59]

X. Liu, P. Hu, M. Huang, Y. Tang, Y. Li, L. Li, X. Hou, The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis, Nat. Commun. 7 (2016) 12768.

[60]

Y. Liu, J. Cui, X. Zhou, Y. Luan, F. Luan, Genome-wide identification, characterization and expression analysis of the TLP gene family in melon (Cucumis melo L.), Genomics 112 (2020) 2499–2509.

[61]

X. Wang, Y. Zheng, B. Chen, C. Zhi, L. Qiao, C. Liu, Y. Pan, Z. Cheng, Genomewide identification of small heat shock protein (HSP20) homologs in three cucurbit species and the expression profiles of CsHSP20s under several abiotic stresses, Int. J. Biol. Macromol. 190 (2021) 827–836.

[62]

Y. Wang, H. Tang, J.D. Debarry, X. Tan, J. Li, X. Wang, T.H. Lee, H. Jin, B. Marler, H. Guo, J.C. Kissinger, A.H. Paterson, MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity, Nucleic Acids Res. 40 (2012) e49.

[63]

H. Sato, T. Suzuki, F. Takahashi, K. Shinozaki, K. Yamaguchi-Shinozaki, NF-YB2 and NF-YB3 have functionally diverged and differentially induce drought and heat stress-specific genes, Plant Physiol. 180 (2019) 1677–1690.

[64]

D. Walther, R. Brunnemann, J. Selbig, The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana, PLoS Genet. 3 (2007) e11.

[65]

T.A. El-Adawy, K.M. Taha, Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours, J. Agric. Food Chem. 49 (2001) 1253–1259.

[66]

H. Tan, X. Yang, F. Zhang, X. Zheng, C. Qu, J. Mu, F. Fu, J. Li, R. Guan, H. Zhang, G. Wang, J. Zuo, Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds, Plant Physiol. 156 (2011) 1577–1588.

[67]

R.C. Kirkbride, R.L. Fischer, J.J. Harada, LEAFY COTYLEDON1, a key regulator of seed development, is expressed in vegetative and sexual propagules of Selaginella moellendorffii, PLoS ONE 8 (2013) e67971.

[68]

A. Horstman, M. Li, I. Heidmann, M. Weemen, B. Chen, J.M. Muino, G.C. Angenent, K. Boutilier, The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis, Plant Physiol. 175 (2017) 848–857.

[69]

J.M. Pelletier, R.W. Kwong, S. Park, B.H. Le, R. Baden, A. Cagliari, M. Hashimoto, M.D. Munoz, R.L. Fischer, R.B. Goldberg, J.J. Harada, LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) E6710–E6719.

[70]

C. Boulard, J. Thévenin, O. Tranquet, V. Laporte, L. Lepiniec, B. Dubreucq, LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed, Biochim. Biophys. Acta 2018 (1861) 443–450.

The Crop Journal
Pages 1469-1479
Cite this article:
Feng Q, Xiao L, Wang J, et al. Genome-wide analysis of nuclear factor Y genes and functional investigation of watermelon ClNF-YB9 during seed development. The Crop Journal, 2023, 11(5): 1469-1479. https://doi.org/10.1016/j.cj.2023.03.005

274

Views

2

Downloads

2

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 09 February 2023
Accepted: 05 March 2023
Published: 05 April 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return